

AFRL-IF-RS-TR-2005-51
Final Technical Report
February 2005

PACE: POWER-AWARE COMPUTING ENGINES

MIT Computer Science & Artificial Intelligence Laboratory

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J873

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-51 has been reviewed and is approved for publication

APPROVED: /s/
 RAYMOND A. LIUZZI
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES A. COLLINS, Acting Chief
 Advanced Computing Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
February 2005

3. REPORT TYPE AND DATES COVERED
FINAL May 00 – May 03

4. TITLE AND SUBTITLE

PACE: POWER-AWARE COMPUTING ENGINES

6. AUTHOR(S)

Krste Asanovic

5. FUNDING NUMBERS
G - F30602-00-2-0562
PE - 62301E
PR - HPSW
TA - 00
WU - 09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MIT Computer Science & Artificial Intelligence Laboratory
32 Vassar Street
Cambridge MA 02139

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFT
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-51

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi/IFT/(315) 330-3577 Raymond.Liuzzi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report describes the PACE project whose objective was to reduce the energy consumption of microprocessors by
exploiting compile time knowledge to reduce run-time switching activity and to power down unneeded blocks. The
project had two phases. The first phase focused on understanding and reducing power consumption within
microprocessor components, such as caches, register files, and arithmetic units. Several new techniques were
developed to reduce both switching and leakage power. The second phase developed a new energy-exposed
microprocessor architecture, SCALE (Software-Controlled Architecture for Low Energy). SCALE is based on a new
vector-thread architectural paradigm which unifies the vector and threaded execution models, to provide efficient
execution of many forms of parallelism. The SCALE vector thread architecture and the detailed design are being
pursued in other projects.

The PACE project developed a variety of power saving techniques at both the micro architectural and instruction set
level, several of which are being actively transferred to industry. Over a dozen conference papers and student theses
have been published to distribute results to the research community.

15. NUMBER OF PAGES14. SUBJECT TERMS
Power-Aware Computing, Architecture, Hardware/Software, Compilers

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

41

Table of Contents

 1. Executive Summary……………………………………………………………... 1
 2. Approach……………………………………………………………………….... 1
 3. Accomplishments…………………………………………………………….….. 2
 4. Technology Transition…………………………………………………………... 3
 5. Conclusion…………………………………………………………………...….. 4
 6. References………………………………………………………………………. 4
Appendix A - The Vector-Thread Architecture.. 6
Appendix B - Energy Aware Lossless Data Compression.. 18
Appendix C - Fine-Grain CAM-Tag Cache Resizing Using Miss Tags................... 32

i

1 Executive Summary

The aim of the PACE project was to reduce the energy consumption of microprocessors by exploiting compile-
time knowledge to reduce run-time switching activity and to power down unneeded blocks. The project had
two phases. The first phase focused on understanding and reducing power consumption within microprocessor
components, such as caches, register files, and arithmetic units. Several new techniques were developed to reduce
both switching and leakage power. The second phase developed a newenergy-exposed microprocessor architecture,
SCALE (Software-Controlled Architecture forLow Energy). SCALE is based on a newvector-thread architectural
paradigm which unifies the vector and threaded execution models, to provide efficient execution of many forms of
parallelism.

2 Approach

The project developed a highly parallel microprocessor architecture, SCALE, that is structured as an array of
processing tiles. Each tile contains both processing and memory resources and the tiles communicate with each
other and off-chip devices over an on-chip communications network. This tiled structure provides both high
performance and low energy consumption by allowing distributed parallel computations on local data. Software
can trade energy and performance by varying the number of tiles allocated to a task. In addition, each tile has
an unprecedented level of fine-grain software power control to enable deactivation of unneeded microarchitectural
components.

Modern instruction set architectures (ISAs), such as RISC and VLIW machines, provide a hardware-software
interface designed solely for maximum performance with minimum hardware complexity. Compared with application-
specific custom circuitry, these general purpose processors exhibit a factor of 100–1000 worse energy-delay prod-
uct. This project worked on reducing this gap by re-examining the hardware-software interface, only now consid-
ering both performance and energy consumption. The approach was to co-develop new machine architectures that
expose energy consumption to software together with new compilation technology that can communicate energy-
saving compile-time knowledge to the hardware. The result was the SCALE architecture, which introduces a new
vector-thread architectural paradigm that provides high performance at low power for many forms of application
parallelism.

The initial phase of the project examined the power consumption in various microarchitectural components.
We developed a number of power saving techniques at the microarchitectural level, and gained insight into where
software could best help reduce power through the instruction set level.

 1

To help evaluate the approach, a fast and accurate energy-performance simulation framework (SyCHOSys)
was developed that enables simulation of complete microprocessor designs running large scale applications while
gathering detailed energy statistics. This simulator extends the state of the art by enabling accurate (< 10% error)
cycle-by-cycle energy characterization for billions of cycles of simulated CPU activity.

The compiler research in this project leveraged two existing sophisticated optimizing compiler infrastructures
developed at MIT: the RAW FORTRAN and C compiler and the FLEX Java compiler. These were enhanced and
extended to extract compile-time knowledge to reduce microprocessor power.

3 Accomplishments

SyCHOSys Power-Performance Simulator

We developed a compiled energy-performance simulator [1].This simulator tracks the energy consumption for
each individual signal within a processor with less than 10%error of a full SPICE-level circuit simulation, but is
fast enough to simulate several billion cycles of application code in a single day on a commercial workstation.

We used the simulation to determine the energy-consumptionwithin a complete low-power microprocessor
architecture [2] running a range of application benchmarks. Results obtained illustrate areas that require further
energy savings after common low-power optimizations are applied. This simulator framework was used for many
of the following studies.

Activity-Sensitive Flip-Flops

Latches and flip-flops are important components of total power dissipation. We developed a newactivity-sensitive
flip-flop design methodology which reduces flip-flop and latchenergy by up to 60% with no speed penalty by using
detailed knowledge of the expected data and clock activity for each register [3].

We also investigated the effect of loading on flip-flop power consumption, and showed that the relative energy-
delay performance of various flip-flop designs changes as both absolute output load and input-to-output load ratio
are varied [4].

Cache and Register File Optimizations

In the first phase of the project, we developed a number of techniques to reduce energy in the caches and register
files of processors.

Way-memorization avoids cache tag lookups by building direct links within the instruction cache. This removes
97% of instruction cache tag lookups, saving 23% of I-cache energy [5].

We developed a newdynamic cache resizing technique that adapts active cache size to application needs to
reduce switching and leakage power in highly-associative caches. This technique typically reduces active cache
size and power by one half with minimal impact on performance[6].

To reduce register file energy, we developed a banked register file scheme with a simple speculative control
scheme [7]. This reduced register file size by a factor of three and access energy by 40%.

Fine-Grain Leakage Reduction

Leakage current is a growing concern as threshold voltages are scaled down. We have developed circuits and
microarchitectures for fine-grain dynamic leakage reduction, which allow small portions of an active processor
to be powered down for a short period of time to save static leakage power. Our techniques useleakage-biased
circuits, where leakage currents themselves are used to bias circuits into a low-leakage state. Savings of over 57%
of overall active power were estimated for a multiported register file, with no performance loss [8].

We have also developed a high-performance leakage-biased domino circuit style, which reduces standby leak-
age by a factor of 100 compared to dual-Vt domino [9], at the same delay.

2

Activity Migration

Power dissipation is distributed unevenly over the surfaceof a microprocessor, leading to local temperature “hot-
spots”, which limit sustainable power dissipation and reduce reliability.

We developed the technique ofactivity migration to reduce power density in microprocessors. Activity migra-
tion reduces die temperature by moving computation betweenmultiple redundant circuits as each one heats up.
The drop in die temperature reduces leakage current by up to 35% and increases transistor speed by up to 16% [10].

Heads-and-Tails Variable Length Instruction Encoding

We developed the heads-and-tails format, which simplifies pipelined or superscalar instruction fetch and decode
of a dense variable-length instruction format. For RISC processors a 25% reduction in code size was achieved, for
VLIW processors a 40% reduction in static code size was achieved [11, 12]. Reduced code size provides better hit
ratios in small low-power caches.

Energy-Exposed Instruction Sets

The second phase of the project focused on how compile-time knowledge could reduce energy consumption at run
time. We developed several complementary ideas in energy-exposed instruction sets [13].

Inside current microprocessors, there is considerable microarchitectural overhead in support precise exceptions
on every instruction. Usingsoftware restart markers we can shift some of this burden to the compiler, by only
marking certain instructions as requiring precise exception semantics. We implemented compiler passes in both
C and Java and determined we could remove around 60% of exception points in code using only a simple local
analysis [14, 13].

The compiler is responsible for register allocation, and this information can be used to reduce register file
traffic. We developed a hybrid accumulator-RISC architecture that allows software to manage the bypass latches
directly, and implemented compiler passes that removed up to 36% of register file reads and up to 47% of register
file writes in C and Java programs [14, 13].

We also developed the direct-addressed cache, a combined hardware and software scheme that uses compile-
time knowledge to remove up to 70% of data cache tag checks at run-time [15].

SCALE Vector-Thread Architecture

The SCALE architecture builds upon the experience gained inthe first phase in the project. SCALE is based around
an energy-exposed instruction and introduces a new architectural paradigm,vector threading. The vector-thread
architecture unifies vector and threaded parallel execution models to give high performance on a wide range of
applications [16].

An instruction-level simulator and a detailed microarchitectural-level cycle simulator have been completed for
SCALE.

We are continuing to complete a prototype implementation ofthe SCALE architecture in other work.

Mondriaan Memory Protection

A new fine-grained memory protection system,Mondriaan Memory protection, was developed as an offshoot of
the software-controlled low-power cache design [17, 18, 19]. This scheme provides efficient hardware memory
protection to improve system robustness.

A patent has been filed for this technique.

4 Technology transition

Numerous technology transition paths are being pursued to transfer results to industrial partners.

3

Activity-sensitive Flip-Flops and Latches

The activity-sensitive flip-flop and latch methodology has been transferred to the Desktop Products Group at Intel
Corporation, where it was evaluated and cleared for use in product development.

Heads and Tails Instruction Compression

A collaboration with Paolo Faraboschi and Josh Fisher at HP laboratories was undertaken to evaluate Heads-and-
Tails instruction encoding for HP’s Lx embedded VLIW microprocessor, using HP compilers and simulators.

Fine-Grain Dynamic Leakage Reduction

Fine-Grain Dynamic Leakage Reduction Techniques for fine-grain dynamic leakage reduction are being evaluated
within the Desktop Products Group at Intel Corporation. An MIT graduate student worked as an intern with George
Cai at Intel, Austin to help with technology transition. Intel is continuing to fund this work at MIT.

Banked Register Files

A graduate student is currently working with Xiaowie Chen atIBM T. J. Watson evaluating the use of banked
register files within future IBM PowerPC processors.

Power Modeling

A detailed cache and memory energy model, ZOOM, was developed in collaboration with Jude Rivers at IBM’s
T.J. Watson Laboratory. A student worked at IBM for the summer to incorporate data from commercial cache
designs.

A second graduate student is currently working on power models for single-chip multiprocessors with Pradip
Bose at IBM T. J. Watson.

5 Conclusion

A variety of power saving techniques at both the microarchitectural and instruction set level have been developed,
several of which are being actively transferred to industry through student internships. Over a dozen conference
papers and student theses have been published to distributeresults to the research community. The SCALE vector-
thread architecture was developed and the detailed design is now being pursued in other work.

6 References

[1] R. Krashinsky, S. Heo, M. Zhang, and K. Asanović. SyCHOSys: Compiled energy-performance cycle simulation. In
Workshop on Complexity-Effective Design, 27th ISCA, Vancouver, Canada, June 2000.

[2] R. Krashinsky. Microprocessor energy characterization and optimization through fast, accurate, and flexible simulation.
Master’s thesis, Massachusetts Institute of Technology, May 2001.

[3] S. Heo, R. Krashinsky, and K. Asanović. Activity-sensitive flip-flop and latch selection for reduced energy. In19th
Conference on Advanced Research in VLSI, Salt Lake City,UT USA, March 2001.

[4] S. Heo and K. Asanović. Load-sensitive flip-flop characterization. InIEEE Workshop on VLSI, Orlando, FL, April
2001.

[5] A. Ma, M. Zhang, and K. Asanović. Way memoization to reduce fetch energy in instruction caches.Workshop on
Complexity-Effective Design, International Symposium on Computer Architecture, June 2001.

4

[6] M. Zhang and K. Asanović. Miss tags for fine-grain CAM-tag cache resizing. InInternational Symposium on Low
Power Electronics and Design, Monterey, CA, August 2002.

[7] J. Tseng and K. Asanović. Banked multiported register files for high-frequency superscalar microprocessors. In30th
International Symposium on Computer Architecture, San Diego, CA, June 2003.

[8] S. Heo, K. Barr, M. Hampton, and K. Asanović. Dynamic fine-grain leakage reduction using leakage-biased bitlines. In
International Symposium on Computer Architecture, Anchorage, AK, May 2002.

[9] S. Heo and K. Asanović. Leakage-biased domino circuitsfor dynamic fine-grain leakage reduction. InSymposium on
VLSI Circuits, Honolulu, HI, June 2002.

[10] S. Heo, K. Barr, and K. Asanović. Reducing power density through activity migration. InInternational Symposium on
Low Power Electronics and Design, Seoul, Korea, August 2003.

[11] H. Pan and K. Asanović. Heads and Tails: A variable-length instruction format supporting parallel fetch and decode.
In International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Atlanta, GA, November
2001.

[12] H. Pan. High-performancevariable-length instruction encodings. Master’s thesis, Massachusetts Institute of Technology,
May 2002.

[13] K. Asanović, M. Hampton, R. Krashinsky, and E. Witchel. Energy-exposed instruction sets. In R. Graybill and R. Mel-
hem, editors,Power-Aware Computing. Kluwer/Plenum Publishing, 2002.

[14] M. Hampton. Exposing datapath elements to reduce microprocessor energy consumption. Master’s thesis, Mas-
sachusetts Institute of Technology, June 2001.

[15] E. Witchel, S. Larsen, C. S. Ananian, and K. Asanović. Direct addressed caches for reduced power consumption. In
34th International Symposium on Microarchitecture, Austin, TX, December 2001.

[16] R. Krashinsky, C. Batten, S. Gerding, M. Hampton, B. Pharris, J. Casper, and K. Asanović. The vector-thread architec-
ture. In31st International Symposium on Computer Architecture, Munich, Germany, June 2004.

[17] E. Witchel, J. Cates, and K. Asanović. Mondrian memoryprotection. InTenth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 304–316, San Jose, CA, October 2002.

[18] E. Witchel and K. Asanović. Hardware works, software doesn’t: Enforcing modularity with Mondriaan memory pro-
tection. InNinth Workshop on Hot Topics in Operating Systems, Lihue, HI, May 2003.

[19] E. Witchel.Mondriaan Memory Protection. PhD thesis, Massachusetts Institute of Technology, 2004.

5

Appears in, The 31st Annual International Symposium on Computer Architecture (ISCA-31), Munich, Germany, June 2004

APPENDIX A - The Vector-Thread Architecture

Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding,
Brian Pharris, Jared Casper, and Krste Asanović

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139�
ronny,cbatten,krste � @csail.mit.edu

Abstract
The vector-thread (VT) architectural paradigm unifies the vector
and multithreaded compute models. The VT abstraction provides
the programmer with a control processor and a vector of virtual
processors (VPs). The control processor can use vector-fetch com-
mands to broadcast instructions to all the VPs or each VP can use
thread-fetches to direct its own control flow. A seamless intermix-
ing of the vector and threaded control mechanisms allows a VT ar-
chitecture to flexibly and compactly encode application parallelism
and locality, and a VT machine exploits these to improve perfor-
mance and efficiency. We present SCALE, an instantiation of the
VT architecture designed for low-power and high-performance em-
bedded systems. We evaluate the SCALE prototype design using
detailed simulation of a broad range of embedded applications and
show that its performance is competitive with larger and more com-
plex processors.

1. Introduction
Parallelism and locality are the key application characteristics

exploited by computer architects to make productive use of increas-
ing transistor counts while coping with wire delay and power dissi-
pation. Conventional sequential ISAs provide minimal support for
encoding parallelism or locality, so high-performance implementa-
tions are forced to devote considerable area and power to on-chip
structures that extract parallelism or that support arbitrary global
communication. The large area and power overheads are justi-
fied by the demand for even small improvements in performance
on legacy codes for popular ISAs. Many important applications
have abundant parallelism, however, with dependencies and com-
munication patterns that can be statically determined. ISAs that
expose more parallelism reduce the need for area and power in-
tensive structures to extract dependencies dynamically. Similarly,
ISAs that allow locality to be expressed reduce the need for long-
range communication and complex interconnect. The challenge is
to develop an efficient encoding of an application’s parallel depen-
dency graph and to reduce the area and power consumption of the
microarchitecture that will execute this dependency graph.

In this paper, we unify the vector and multithreaded execution
models with the vector-thread (VT) architectural paradigm. VT
allows large amounts of structured parallelism to be compactly en-
coded in a form that allows a simple microarchitecture to attain
high performance at low power by avoiding complex control and
datapath structures and by reducing activity on long wires. The
VT programmer’s model extends a conventional scalar control pro-
cessor with an array of slave virtual processors (VPs). VPs ex-
ecute strings of RISC-like instructions packaged into atomic in-
struction blocks (AIBs). To execute data-parallel code, the control
processor broadcasts AIBs to all the slave VPs. To execute thread-

parallel code, each VP directs its own control flow by fetching its
own AIBs. Implementations of the VT architecture can also exploit
instruction-level parallelism within AIBs.

In this way, the VT architecture supports a modeless intermin-
gling of all forms of application parallelism. This flexibility pro-
vides new ways to parallelize codes that are difficult to vectorize or
that incur excessive synchronization costs when threaded. Instruc-
tion locality is improved by allowing common code to be factored
out and executed only once on the control processor, and by execut-
ing the same AIB multiple times on each VP in turn. Data locality
is improved as most operand communication is isolated to within
an individual VP.

We are developing a prototype processor, SCALE, which is
an instantiation of the vector-thread architecture designed for
low-power and high-performance embedded systems. As tran-
sistors have become cheaper and faster, embedded applications
have evolved from simple control functions to cellphones that
run multitasking networked operating systems with realtime video,
three-dimensional graphics, and dynamic compilation of garbage-
collected languages. Many other embedded applications require
sophisticated high-performance information processing, including
streaming media devices, network routers, and wireless base sta-
tions. In this paper, we show how benchmarks taken from these em-
bedded domains can be mapped efficiently to the SCALE vector-
thread architecture. In many cases, the codes exploit multiple types
of parallelism simultaneously for greater efficiency.

The paper is structured as follows. Section 2 introduces the
vector-thread architectural paradigm. Section 3 then describes the
SCALE processor which contains many features that extend the ba-
sic VT architecture. Section 4 presents an evaluation of the SCALE
processor using a range of embedded benchmarks and describes
how SCALE efficiently executes various types of code. Finally,
Section 5 reviews related work and Section 6 concludes.

2. The VT Architectural Paradigm
An architectural paradigm consists of the programmer’s model

for a class of machines plus the expected structure of implementa-
tions of these machines. This section first describes the abstraction
a VT architecture provides to a programmer, then gives an overview
of the physical model for a VT machine.

2.1 VT Abstract Model
The vector-thread architecture is a hybrid of the vector and mul-

tithreaded models. A conventional control processor interacts with
a virtual processor vector (VPV), as shown in Figure 1. The pro-
gramming model consists of two interacting instruction sets, one
for the control processor and one for the VPs. Applications can
be mapped to the VT architecture in a variety of ways but it is es-

6

Memory

cross−VP
start/stop
queue Regs

thread−fetch

VP [vl−1]

Regs

thread−fetch

VP0

Regs

thread−fetch

VP1

ALUs ALUs ALUs

vector−fetch vector−fetch vector−fetch

command
Control

Processor

Figure 1: Abstract model of a vector-thread architecture. A control
processor interacts with a virtual processor vector (an ordered se-
quence of VPs).

vector−fetch
VP1 VP[vl−1]VP0

sb r6,r0(r3)

add r4,r5−>r6

lb r0(r2)−>r5

sb r6,r0(r3)

add r4,r5−>r6

lb r0(r2)−>r5

lb r0(r1)−>r4

sb r6,r0(r3)

add r4,r5−>r6

lb r0(r2)−>r5

lb r0(r1)−>r4lb r0(r1)−>r4

Figure 2: Vector-fetch commands. For simple data-parallel loops, the
control processor can use a vector-fetch command to send an atomic
instruction block (AIB) to all the VPs in parallel. In this vector-vector
add example, we assume that r0 has been loaded with each VP’s in-
dex number; and r1, r2, and r3 contain the base addresses of the in-
put and output vectors. The instruction notation places the destination
registers after the “->”.

pecially well suited to executing loops; each VP executes a single
iteration of the loop and the control processor is responsible for
managing the execution.

A virtual processor contains a set of registers and has the abil-
ity to execute RISC-like instructions with virtual register specifiers.
VP instructions are grouped into atomic instruction blocks (AIBs),
the unit of work issued to a VP at one time. There is no auto-
matic program counter or implicit instruction fetch mechanism for
VPs; all instruction blocks must be explicitly requested by either
the control processor or the VP itself.

The control processor can direct the VPs’ execution using a
vector-fetch command to issue an AIB to all the VPs in parallel,
or a VP-fetch to target an individual VP. Vector-fetch commands
provide a programming model similar to conventional vector ma-
chines except that a large block of instructions can be issued at
once. As a simple example, Figure 2 shows the mapping for a data-
parallel vector-vector add loop. The AIB for one iteration of the
loop contains two loads, an add, and a store. A vector-fetch com-
mand sends this AIB to all the VPs in parallel and thus initiates vl
loop iterations, where vl is the length of the VPV (i.e., the vec-
tor length). Every VP executes the same instructions but operates
on distinct data elements as determined by its index number. As
a more efficient alternative to the individual VP loads and stores
shown in the example, a VT architecture can also provide vector-
memory commands issued by the control processor which move a
vector of elements between memory and one register in each VP.

The VT abstract model connects VPs in a unidirectional ring
topology and allows a sending instruction on VP (�) to transfer
data directly to a receiving instruction on VP

� ������� . These cross-
VP data transfers are dynamically scheduled and resolve when the
data becomes available. Cross-VP data transfers allow loops with
cross-iteration dependencies to be efficiently mapped to the vector-
thread architecture, as shown by the example in Figure 3. A single
vector-fetch command can introduce a chain of prevVP receives
and nextVP sends that spans the VPV. The control processor can
push an initial value into the cross-VP start/stop queue (shown in
Figure 1) before executing the vector-fetch command. After the
chain executes, the final cross-VP data value from the last VP wraps

vector−fetch

from cross−VP
start/stop queue

start/stop queue
to cross−VP

VP0 VP1 VP[vl−1]

add prevVP,r5−>r5

lb r0(r1)−>r5

slt r5,r3−>p

(p)copy r3−>r5

slt r4,r5−>p

(p)copy r4−>r5

copy r5−>nextVP

sb r5,r0(r2)

add prevVP,r5−>r5

lb r0(r1)−>r5

slt r5,r3−>p

(p)copy r3−>r5

slt r4,r5−>p

(p)copy r4−>r5

copy r5−>nextVP

sb r5,r0(r2)

add prevVP,r5−>r5

lb r0(r1)−>r5

slt r5,r3−>p

(p)copy r3−>r5

slt r4,r5−>p

(p)copy r4−>r5

copy r5−>nextVP

sb r5,r0(r2)

Figure 3: Cross-VP data transfers. For loops with cross-iteration de-
pendencies, the control processor can vector-fetch an AIB that contains
cross-VP data transfers. In this saturating parallel prefix sum example,
we assume that r0 has been loaded with each VP’s index number, r1
and r2 contain the base addresses of the input and output vectors, and
r3 and r4 contain the min and max values of the saturation range. The
instruction notation uses “(p)” to indicate predication.

thread−fetch

thread−fetchadd r2,1−>r2

seq r0,0−>p

lw 0(r0)−>r0

(!p) fetch r1

add r2,1−>r2

(!p) fetch r1

lw 0(r0)−>r0

seq r0,0−>p

add r2,1−>r2

(!p) fetch r1

seq r0,0−>p

lw 0(r0)−>r0

Figure 4: VP threads. Thread-fetches allow a VP to request its own
AIBs and thereby direct its own control flow. In this pointer-chase ex-
ample, we assume that r0 contains a pointer to a linked list, r1 contains
the address of the AIB, and r2 contains a count of the number of links
traversed.

around and is written into this same queue. It can then be popped
by the control processor or consumed by a subsequent prevVP
receive on VP0 during stripmined loop execution.

The VT architecture also allows VPs to direct their own control
flow. A VP executes a thread-fetch to request an AIB to execute af-
ter it completes its active AIB, as shown in Figure 4. Fetch instruc-
tions may be predicated to provide conditional branching. A VP
thread persists as long as each AIB contains an executed fetch in-
struction, but halts once the VP stops issuing thread-fetches. Once
a VP thread is launched, it executes to completion before the next
command from the control processor takes effect. The control pro-
cessor and VPs all operate concurrently in the same address space.
Memory dependencies between these processors are preserved via
explicit memory fence and synchronization operations or atomic
read-modify-write operations.

The ability to freely intermix vector-fetches and thread-fetches
allows a VT architecture to combine the best attributes of the vec-
tor and multithreaded execution paradigms. As shown in Figure 5,
the control processor can issue a vector-fetch command to launch a
vector of VP threads, each of which continues to execute as long as
it issues thread-fetches. These thread-fetches break the rigid con-
trol flow of traditional vector machines, enabling the VP threads
to follow independent control paths. Thread-fetches broaden the
range of loops which can be mapped efficiently to VT, allowing
the VPs to execute data-parallel loop iterations with conditionals
or even inner-loops. Apart from loops, the VPs can also be used as
free-running threads, where they operate independently from the
control processor and retrieve tasks from a shared work queue.

The VT architecture allows software to efficiently expose struc-
tured parallelism and locality at a fine granularity. Compared to
a conventional threaded architecture, the VT model allows com-
mon bookkeeping code to be factored out and executed once on
the control processor rather than redundantly in each thread. AIBs
enable a VT machine to efficiently amortize instruction fetch over-
head, and provide a framework for cleanly handling temporary

7

VP0

VP4

VP8

VP12

ALU
AIB

cache ALU
AIB

cacheALU
AIB

cache

VP1

VP5

VP9

VP13

VP2

VP6

VP10

VP14

ALU
AIB

cache

VP3

VP7

VP11

VP15

command

cross−VP
start/stop
queue

AIB Fill
Unit

addr.

miss

Processor
Control

L1 Cache

cmd−Q

VP

directive

Command Management Unit

thread−fetch

Execution Cluster

execute

Lane 0

AIB
tags

cmd−Q

VP

directive

Command Management Unit

thread−fetch

Execution Cluster

execute

Lane 3

AIB
tags

cmd−Q

VP

directive

Command Management Unit

thread−fetch

Execution Cluster

execute

Lane 1

AIB
tags

cmd−Q

VP

directive

Command Management Unit

thread−fetch

Execution Cluster

execute

Lane 2

AIB
tags

Figure 6: Physical model of a VT machine. The implementation shown has four parallel lanes in the vector-thread unit (VTU), and VPs are striped
across the lane array with the low-order bits of a VP index indicating the lane to which it is mapped. The configuration shown uses VPs with five
virtual registers, and with twenty physical registers each lane is able to support four VPs. Each lane is divided into a command management unit
(CMU) and an execution cluster, and the execution cluster has an associated cross-VP start-stop queue.

vector−fetch

vector−fetch

vector−fetch

AIB

VP[vl−1]VP3VP2VP1VP0

thread−fetch

Figure 5: The control processor can use a vector-fetch command to
send an AIB to all the VPs, after which each VP can use thread-fetches
to fetch its own AIBs.

state. Vector-fetch commands explicitly encode parallelism and
instruction locality, allowing a VT machine to attain high perfor-
mance while amortizing control overhead. Vector-memory com-
mands avoid separate load and store requests for each element,
and can be used to exploit memory data-parallelism even in loops
with non-data-parallel compute. For loops with cross-iteration de-
pendencies, cross-VP data transfers explicitly encode fine-grain
communication and synchronization, avoiding heavyweight inter-
thread memory coherence and synchronization primitives.

2.2 VT Physical Model
An architectural paradigm’s physical model is the expected

structure for efficient implementations of the abstract model. The
VT physical model contains a conventional scalar unit for the con-
trol processor together with a vector-thread unit (VTU) that exe-
cutes the VP code. To exploit the parallelism exposed by the VT ab-
stract model, the VTU contains a parallel array of processing lanes
as shown in Figure 6. Lanes are the physical processors which VPs
map onto, and the VPV is striped across the lane array. Each lane
contains physical registers, which hold the state of VPs mapped to
the lane, and functional units, which are time-multiplexed across
the VPs. In contrast to traditional vector machines, the lanes in a
VT machine execute decoupled from each other. Figure 7 shows an
abstract view of how VP execution is time-multiplexed on the lanes
for both vector-fetched and thread-fetched AIBs. This fine-grain
interleaving helps VT machines hide functional unit, memory, and
thread-fetch latencies.

As shown in Figure 6, each lane contains both a command man-
agement unit (CMU) and an execution cluster. An execution cluster
consists of a register file, functional units, and a small AIB cache.

Time

thread−fetch

vector−fetch

vector−fetch
Lane 0 Lane 3Lane 1 Lane 2

VP0

VP4

VP8

VP0

VP4

VP8

VP0
VP7

VP4

VP1

VP5

VP9

VP1

VP5

VP9

VP2

VP10

VP6

VP2

VP2

VP6

VP10

VP3

VP7

VP11

VP3

VP7

VP11

VP3

Figure 7: Lane Time-Multiplexing. Both vector-fetched and thread-
fetched AIBs are time-multiplexed on the physical lanes.

The lane’s CMU buffers commands from the control processor in
a queue (cmd-Q) and holds pending thread-fetch addresses for the
lane’s VPs. The CMU also holds the tags for the lane’s AIB cache.
The AIB cache can hold one or more AIBs and must be at least
large enough to hold an AIB of the maximum size defined in the
VT architecture.

The CMU chooses a vector-fetch, VP-fetch, or thread-fetch com-
mand to process. The fetch command contains an address which is
looked up in the AIB tags. If there is a miss, a request is sent to
the fill unit which retrieves the requested AIB from the primary
cache. The fill unit handles one lane’s AIB miss at a time, except if
lanes are executing vector-fetch commands when refill overhead is
amortized by broadcasting the AIB to all lanes simultaneously.

After a fetch command hits in the AIB cache or after a miss refill
has been processed, the CMU generates an execute directive which
contains an index into the AIB cache. For a vector-fetch command
the execute directive indicates that the AIB should be executed by
all VPs mapped to the lane, while for a VP-fetch or thread-fetch
command it identifies a single VP to execute the AIB. The execute
directive is sent to a queue in the execution cluster, leaving the
CMU free to begin processing the next command. The CMU is
able to overlap the AIB cache refill for new fetch commands with
the execution of previous ones, but must track which AIBs have
outstanding execute directives to avoid overwriting their entries in
the AIB cache. The CMU must also ensure that the VP threads
execute to completion before initiating a subsequent vector-fetch.

To process an execute directive, the cluster reads VP instructions8

8

one by one from the AIB cache and executes them for the appropri-
ate VP. When processing an execute-directive from a vector-fetch
command, all of the instructions in the AIB are executed for one VP
before moving on to the next. The virtual register indices in the VP
instructions are combined with the active VP number to create an
index into the physical register file. To execute a fetch instruction,
the cluster sends the requested AIB address to the CMU where the
VP’s associated pending thread-fetch register is updated.

The lanes in the VTU are inter-connected with a unidirectional
ring network to implement the cross-VP data transfers. When a
cluster encounters an instruction with a prevVP receive, it stalls
until the data is available from its predecessor lane. When the VT
architecture allows multiple cross-VP instructions in a single AIB,
with some sends preceding some receives, the hardware implemen-
tation must provide sufficient buffering of send data to allow all the
receives in an AIB to execute. By induction, deadlock is avoided if
each lane ensures that its predecessor can never be blocked trying
to send it cross-VP data.

3. The SCALE VT Architecture
SCALE is an instance of the VT architectural paradigm designed

for embedded systems. The SCALE architecture has a MIPS-based
control processor extended with a VTU. The SCALE VTU aims to
provide high performance at low power for a wide range of appli-
cations while using only a small area. This section describes the
SCALE VT architecture, presents a simple code example imple-
mented on SCALE, and gives an overview of the SCALE microar-
chitecture and SCALE processor prototype.

3.1 SCALE Extensions to VT

Clusters

To improve performance while reducing area, energy and circuit
delay, SCALE extends the single-cluster VT model (shown in Fig-
ure 1) by partitioning VPs into multiple execution clusters with in-
dependent register sets. VP instructions target an individual cluster
and perform RISC-like operations. Source operands must be lo-
cal to the cluster, but results can be written to any cluster in the
VP, and an instruction can write its result to multiple destinations.
Each cluster within a VP has a separate predicate register, and in-
structions can be positively or negatively predicated.

SCALE clusters are heterogeneous, but all clusters support basic
integer operations. Cluster 0 additionally supports memory access
instructions, cluster 1 supports fetch instructions, and cluster 3 sup-
ports integer multiply and divide. Though not used in this paper, the
SCALE architecture allows clusters to be enhanced with layers of
additional functionality (e.g., floating-point operations, fixed-point
operations, and sub-word SIMD operations), or new clusters to be
added to perform specialized operations.

Registers and VP Configuration

The general registers in each cluster of a VP are categorized as ei-
ther private registers (pr’s) and shared registers (sr’s). Both pri-
vate and shared registers can be read and written by VP instructions
and by commands from the control processor. The main difference
is that private registers preserve their values between AIBs, while
shared registers may be overwritten by a different VP. Shared reg-
isters can be used as temporary state within an AIB to increase the
number of VPs that can be supported by a fixed number of physical
registers. The control processor can also vector-write the shared
registers to broadcast scalar values and constants used by all VPs.

In addition to the general registers, each cluster also has
programmer-visible chain registers (cr0 and cr1) associated with

the two ALU input operands. These can be used as sources and
destinations to avoid reading and writing the register files. Like
shared registers, chain registers may be overwritten between AIBs,
and they are also implicitly overwritten when a VP instruction uses
their associated operand position. Cluster 0 has a special chain reg-
ister called the store-data (sd) register through which all data for
VP stores must pass.

In the SCALE architecture, the control processor configures the
VPs by indicating how many shared and private registers are re-
quired in each cluster. The length of the virtual processor vector
changes with each re-configuration to reflect the maximum num-
ber of VPs that can be supported. This operation is typically done
once outside each loop, and state in the VPs is undefined across re-
configurations. Within a lane, the VTU maps shared VP registers
to shared physical registers. Control processor vector-writes to a
shared register are broadcast to each lane, but individual VP writes
to a shared register are not coherent across lanes, i.e., the shared
registers are not global registers.

Vector-Memory Commands

In addition to VP load and store instructions, SCALE defines
vector-memory commands issued by the control processor for effi-
cient structured memory accesses. Like vector-fetch commands,
these operate across the virtual processor vector; a vector-load
writes the load data to a private register in each VP, while a vector-
store reads the store data from a private register in each VP. SCALE
also supports vector-load commands which target shared registers
to retrieve values used by all VPs. In addition to the typical unit-
stride and strided vector-memory access patterns, SCALE provides
vector segment accesses where each VP loads or stores several con-
tiguous memory elements to support “array-of-structures” data lay-
outs efficiently.

3.2 SCALE Code Example
This section presents a simple code example to show how

SCALE is programmed. The C code in Figure 8 implements a sim-
plified version of the ADPCM speech decoder. Input is read from
a unit-stride byte stream and output is written to a unit-stride half-
word stream. The loop is non-vectorizable because it contains two
loop-carried dependencies: the index and valpred variables are
accumulated from one iteration to the next with saturation. The
loop also contains two table lookups.

The SCALE code to implement the example decoder function
is shown in Figure 9. The code is divided into two sections with
MIPS control processor code in the .text section and SCALE VP
code in the .sisa (SCALE ISA) section. The SCALE VP code
implements one iteration of the loop with a single AIB; cluster 0
accesses memory, cluster 1 accumulates index, cluster 2 accumu-
lates valpred, and cluster 3 does the multiply.

The control processor first configures the VPs using the vcfgvl
command to indicate the register requirements for each cluster. In
this example, c0 uses one private register to hold the input data and
two shared registers to hold the table pointers; c1 and c2 each use
three shared registers to hold the min and max saturation values
and a temporary; c2 also uses a private register to hold the out-
put value; and c3 uses only chain registers so it does not need any
shared or private registers. The configuration indirectly sets vl-
max, the maximum vector length. In a SCALE implementation
with 32 physical registers per cluster and four lanes, vlmax would
be:

��� ��������� �
	 ��� ������ � ��� , limited by the register demands of
cluster 2. The vcfgvl command also sets vl, the active vector-
length, to the minimum of vlmax and the length argument pro-
vided; the resulting length is returned as a result. The control pro-

9

void decode_ex(int len, u_int8_t* in, int16_t* out) {
int i;
int index = 0;
int valpred = 0;
for(i = 0; i < len; i++) {

u_int8_t delta = in[i];
index += indexTable[delta];
index = index < IX_MIN ? IX_MIN : index;
index = IX_MAX < index ? IX_MAX : index;
valpred += stepsizeTable[index] * delta;
valpred = valpred < VALP_MIN ? VALP_MIN : valpred;
valpred = VALP_MAX < valpred ? VALP_MAX : valpred;
out[i] = valpred;

}
}

Figure 8: C code for decoder example.

cessor next vector-writes several shared VP registers with constants
using the vwrsh command, then uses the xvppush command to
push the initial index and valpred values into the cross-VP
start/stop queues for clusters 1 and 2.

The ISA for a VT architecture is defined so that code can
be written to work with any number of VPs, allowing the same
object code to run on implementations with varying or config-
urable resources. To manage the execution of the loop, the con-
trol processor uses stripmining to repeatedly launch a vector of
loop iterations. For each iteration of the stripmine loop, the con-
trol processor uses the setvl command which sets the vector-
length to the minimum of vlmax and the length argument pro-
vided (i.e., the number of iterations remaining for the loop); the
resulting vector-length is also returned as a result. In the de-
coder example, the control processor then loads the input using
an auto-incrementing vector-load-byte-unsigned command (vl-
buai), vector-fetches the AIB to compute the decode, and stores
the output using an auto-incrementing vector-store-halfword com-
mand (vshai). The cross-iteration dependencies are passed from
one stripmine vector to the next through the cross-VP start/stop
queues. At the end of the function the control processor uses the
xvppop command to pop and discard the final values.

The SCALE VP code implements one iteration of the loop in
a straightforward manner with no cross-iteration static scheduling.
Cluster 0 holds the delta input value in pr0 from the previous
vector-load. It uses a VP load to perform the indexTable lookup
and sends the result to cluster 1. Cluster 1 uses five instructions to
accumulate and saturate index, using prevVP and nextVP to
receive and send the cross-iteration value, and the psel (predicate-
select) instruction to optimize the saturation. Cluster 0 then per-
forms the stepsizeTable lookup using the index value, and
sends the result to cluster 3 where it is multiplied by delta. Clus-
ter 2 uses five instructions to accumulate and saturate valpred,
writing the result to pr0 for the subsequent vector-store.

3.3 SCALE Microarchitecture
The SCALE microarchitecture is an extension of the general VT

physical model shown in Figure 6. A lane has a single CMU and
one physical execution cluster per VP cluster. Each cluster has a
dedicated output bus which broadcasts data to the other clusters in
the lane, and it also connects to its sibling clusters in neighbor-
ing lanes to support cross-VP data transfers. An overview of the
SCALE lane microarchitecture is shown in Figure 10.

Micro-Ops and Cluster Decoupling

The SCALE software ISA is portable across multiple SCALE
implementations, but is designed to be easy to translate into
implementation-specific micro-operations, or micro-ops. The as-
sembler translates the SCALE software ISA into the native hard-

.text # MIPS control processor code
decode_ex: # a0=len, a1=in, a2=out

configure VPs: c0:p,s c1:p,s c2:p,s c3:p,s
vcfgvl t1, a0, 1,2, 0,3, 1,3, 0,0
(vl,t1) = min(a0,vlmax)
sll t1, t1, 1 # output stride
la t0, indexTable
vwrsh t0, c0/sr0 # indexTable addr.
la t0, stepsizeTable
vwrsh t0, c0/sr1 # stepsizeTable addr.
vwrsh IX_MIN, c1/sr0 # index min
vwrsh IX_MAX, c1/sr1 # index max
vwrsh VALP_MIN, c2/sr0# valpred min
vwrsh VALP_MAX, c2/sr1# valpred max
xvppush $0, c1 # push initial index = 0
xvppush $0, c2 # push initial valpred = 0

stripmineloop:
setvl t2, a0 # (vl,t2) = min(a0,vlmax)
vlbuai a1, t2, c0/pr0 # vector-load input, inc ptr
vf vtu_decode_ex # vector-fetch AIB
vshai a2, t1, c2/pr0 # vector-store output, inc ptr
subu a0, t2 # decrement count
bnez a0, stripmineloop # loop until done
xvppop $0, c1 # pop final index, discard
xvppop $0, c2 # pop final valpred, discard
vsync # wait until VPs are done
jr ra # return

.sisa # SCALE VP code
vtu_decode_ex:

.aib begin
c0 sll pr0, 2 -> cr1 # word offset
c0 lw cr1(sr0) -> c1/cr0 # load index
c0 copy pr0 -> c3/cr0 # copy delta
c1 addu cr0, prevVP -> cr0 # accum. index
c1 slt cr0, sr0 -> p # index min
c1 psel cr0, sr0 -> sr2 # index min
c1 slt sr1, sr2 -> p # index max
c1 psel sr2, sr1 -> c0/cr0, nextVP # index max
c0 sll cr0, 2 -> cr1 # word offset
c0 lw cr1(sr1) -> c3/cr1 # load step
c3 mult.lo cr0, cr1 -> c2/cr0 # step*delta
c2 addu cr0, prevVP -> cr0 # accum. valpred
c2 slt cr0, sr0 -> p # valpred min
c2 psel cr0, sr0 -> sr2 # valpred min
c2 slt sr1, sr2 -> p # valpred max
c2 psel sr2, sr1 -> pr0, nextVP # valpred max
.aib end

Figure 9: SCALE code implementing decoder example from Figure 8.

ware ISA at compile time. There are three categories of hardware
micro-ops: a compute-op performs the main RISC-like operation of
a VP instruction; a transport-op sends data to another cluster; and,
a writeback-op receives data sent from an external cluster. The as-
sembler reorganizes micro-ops derived from an AIB into micro-op
bundles which target a single cluster and do not access other clus-
ters’ registers. Figure 11 shows how the SCALE VP instructions
from the decoder example are translated into micro-op bundles.
All inter-cluster data dependencies are encoded by the transport-
ops and writeback-ops which are added to the sending and receiv-
ing cluster respectively. This allows the micro-op bundles for each
cluster to be packed together independently from the micro-op bun-
dles for other clusters.

Partitioning inter-cluster data transfers into separate transport
and writeback operations enables decoupled execution between
clusters. In SCALE, a cluster’s AIB cache contains micro-op bun-
dles, and each cluster has a local execute directive queue and local
control. Each cluster processes its transport-ops in order, broad-
casting result values onto its dedicated output data bus; and each
cluster processes its writeback-ops in order, writing the values from
external clusters to its local registers. The inter-cluster data depen-
dencies are synchronized with handshake signals which extend be-
tween the clusters, and a transaction only completes when both the

10

Cluster 0 Cluster 1 Cluster 2 Cluster 3
wb-op compute-op tp-op wb-op compute-op tp-op wb-op compute-op tp-op wb-op compute-op tp-op

sll pr0,2 � cr1
���
c0 � cr0 addu cr0,pVP � cr0

���
c3 � cr0 addu cr0,pVP � cr0

���
c0 � cr0

lw cr1(sr0) � c1 slt cr0,sr0 � p slt cr0,sr0 � p
���
c0 � cr1 mult cr0,cr1 � c2

c1 � cr0 copy pr0 � c3 psel cr0,sr0 � sr2 psel cr0,sr0 � sr2
sll cr0,2 � cr1 slt sr1,sr2 � p slt sr1,sr2 � p
lw cr1(sr1) � c3 psel sr2,sr1 � nVP,c0 psel sr2,sr1 � pr0 � nVP

Figure 11: Cluster micro-op bundles for the AIB in Figure 9. The writeback-op field is labeled as ’wb-op’ and the transport-op field is labeled as
’tp-op’. A writeback-op is marked with ’ � ’ when the dependency order is writeback-op followed by compute-op. The prevVP and nextVP identifiers
are abbreviated as ’pVP’ and ’nVP’.

VP

VP

Cluster 2

Cluster 3

Cluster 1

Cluster 0

decoupled store queue

writeback−op decoupling

transport−op decoupling

transport−op decoupling

writeback−op decoupling

execution
compute−op

execution
compute−op

writeback−op

compute−op

transport−op

writeback−op

compute−op

transport−op

AIB
Cache

AIB
Cache

prevVP

prevVP

execute
directive

data
(4x32b)

nextVP

nextVP

nextVP

nextVP

load−data address store−data

Register File

ALU

cr0 cr1

ALU

cr0 cr1

store−op

sd

Register File

prevVP

prevVP

load?
src

load−data
queue

store−addr
queue

src.
cluster

src
cluster

dest

dest

src cluster

dest
cluster

dest
cluster

AIBs

AIBs

compute

compute

writeback

transport

writeback

transport

Figure 10: SCALE Lane Microarchitecture. The AIB caches in SCALE
hold micro-op bundles. The compute-op is a local RISC operation on
the cluster, the transport-op sends data to external clusters, and the
writeback-op receives data from external clusters. Clusters 1, 2, and
3 are basic cluster designs with writeback-op and transport-op decou-
pling resources (cluster 1 is shown in detail, clusters 2 and 3 are shown
in abstract). Cluster 0 connects to memory and includes memory access
decoupling resources.

sender and the receiver are ready. Although compute-ops execute
in order, each cluster contains a transport queue to allow execution
to proceed without waiting for external destination clusters to re-
ceive the data, and a writeback queue to allow execution to proceed
without waiting for data from external clusters (until it is needed
by a compute-op). These queues make inter-cluster synchroniza-

C0 C1 C2 C3

Lane 2
C0 C1 C2 C3

Lane 3
C0 C1 C2 C3

mul

slt

slt
psel

psel

add
slt

slt
psel

lw
sll

psel

slt

slt
psel

psel

add

mul

add
slt

slt
psel

psel

lw
sll slt

slt
psel

psel

add

mul

add
slt

slt
psel

psel

lw
sll slt

slt
psel

psel

add

mul

add
slt

slt
psel

lw
sll

slt

slt
psel

psel

add

lw
sll

slt

slt
psel

psel

add

mul

add
slt

slt
psel

psel

lw
sll

slt

slt
psel

psel

add

mul

lw
sll

lw
sll

sll
lw
cpy

sll
lw
cpy

sll
lw
cpy

sll
lw
cpy

VP11

add

sll
lw
cpy

slt

slt
psel

psel

add

sll
lw
cpy

sll
lw
cpy

sll
lw
cpy

psel

mul

add
slt

slt
psel

psel

add
slt

slt
psel

psel
mul

add
slt

slt
psel

psel

lw
sll

sll
lw
cpy

VP8

VP12

VP4
VP5

VP9

VP13
VP14

VP10

VP6

VP7

slt

slt
psel

psel

add

mul

add
slt

slt
psel

psel

Lane 0
C0 C1 C2 C3

VP4

VP4

VP8

VP8

VP8

VP12

VP5

VP5

VP5

VP9

VP9

VP9

VP13

VP10

VP10

VP10

VP6

VP6

VP6

VP2

VP3

VP3

VP7

VP7

VP7

VP11

VP11

Time

Lane 1

Figure 12: Execution of decoder example on SCALE. Each cluster ex-
ecutes in-order, but cluster and lane decoupling allows the execution to
automatically adapt to the software critical path. Critical dependencies
are shown with arrows (solid for inter-cluster within a lane, dotted for
cross-VP).

tion more flexible, and thereby enhance cluster decoupling.
A schematic diagram of the example decoder loop executing on

SCALE (extracted from simulation trace output) is shown in Fig-
ure 12. Each cluster executes the vector-fetched AIB for each VP
mapped to its lane, and decoupling allows each cluster to advance
to the next VP independently. Execution automatically adapts to
the software critical path as each cluster’s local data dependencies
resolve. In the example loop, the accumulations of index and
valpred must execute serially, but all of the other instructions
are not on the software critical path. Furthermore, the two accumu-
lations can execute in parallel, so the cross-iteration serialization
penalty is paid only once. Each loop iteration (i.e., VP) executes
over a period of 30 cycles, but the combination of multiple lanes
and cluster decoupling within each lane leads to as many as six
loop iterations executing simultaneously.

Memory Access Decoupling

All VP loads and stores execute on cluster 0 (c0), and it is specially
designed to enable access-execute decoupling [11]. Typically, c0
loads data values from memory and sends them to other clusters,
computation is performed on the data, and results are returned to c0
and stored to memory. With basic cluster decoupling, c0 can con-
tinue execution after a load without waiting for the other clusters
to receive the data. Cluster 0 is further enhanced to hide memory
latencies by continuing execution after a load misses in the cache,
and therefore it may retrieve load data from the cache out of or-
der. However, like other instructions, load operations on cluster 0
use transport-ops to deliver data to other clusters in order, and c0
uses a load data queue to buffer the data and preserve the correct
ordering.

Importantly, when cluster 0 encounters a store, it does not stall to

11

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

ctrl
A

IB
tag

s

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

ctrl
A

IB
tag

s

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

ctrl
A

IB
tag

s

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

ctrl
A

IB
tag

s

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

R
F

ctrl
A

L
U

sh
ftr

m
u

x/
latch

A
IB$

Cache
Tags

Memory

Cache Control
Interface /

Cache
Bank
(8KB)

Cache
Bank
(8KB)

Cache
Bank
(8KB)

Cache
Bank
(8KB)

M
em

ory U
nit

L
d

/S
t

R
F

b
yp

A
L

U
sh

ftr

M
D

P
C

C
P

0

ctrl

C
rossbar

Mult
Div

Lane

Cluster

Control Processor

2.5m
m

4mm

Figure 13: Preliminary floorplan estimate for SCALE prototype. The
prototype contains a scalar control processor, four 32-bit lanes with
four execution clusters each, and 32 KB of cache in an estimated
10 mm � in 0.18 � m technology.

wait for the data to be ready. Instead it buffers the store operation,
including the store address, in the decoupled store queue until the
store data is available. When a SCALE VP instruction targets the
sd register, the resulting transport-op sends data to the store unit
rather than to c0; thus, the store unit acts as a primary destination
for inter-cluster transport operations and it handles the writeback-
ops for sd. Store decoupling allows a lane’s load stream to slip
ahead of its store stream, but loads for a given VP are not allowed
to bypass previous stores to the same address by the same VP.

Vector-Memory Accesses

Vector-memory commands are sent to the clusters as special exe-
cute directives which generate micro-ops instead of reading them
from the AIB cache. For a vector-load, writeback-ops on the desti-
nation cluster receive the load data; and for a vector-store, compute-
ops and transport-ops on the source cluster read and send the store
data. Chaining is provided to allow overlapped execution of vector-
fetched AIBs and vector-memory operations.

The vector-memory commands are also sent to the vector-
memory unit which performs the necessary cache accesses. The
vector-memory unit can only send one address to the cache each cy-
cle, but it takes advantage of the structured access patterns to load
or store multiple elements with each access. The vector-memory
unit communicates load and store data to and from cluster 0 in each
lane to reuse the buffering already provided for the decoupled VP
loads and stores.

3.4 Prototype
We are currently designing a prototype SCALE processor, and

an initial floorplan is shown in Figure 13. The prototype contains a
single-issue MIPS scalar control processor, four 32-bit lanes with
four execution clusters each, and a 32 KB shared primary cache.
The VTU has 32 registers per cluster and supports up to 128 vir-
tual processors. The prototype’s unified L1 cache is 32-way set-
associative [15] and divided into four banks. The vector memory
unit can perform a single access per cycle, fetching up to 128 bits
from a single bank, or all lanes can perform VP accesses from dif-
ferent banks. The cache is non-blocking and connects to off-chip
DDR2 SDRAM.

The area estimate of around 10 mm � in 0.18 � m technology is
based on microarchitecture-level datapath designs for the control
processor and VTU lanes; cell dimensions based on layout for the
datapath blocks, register files, CAMs, SRAM arrays, and cross-
bars; and estimates for the synthesized control logic and external
interface overhead. We have designed the SCALE prototype to

Vector-Thread Unit
Number of lanes 4
Clusters per lane 4
Registers per cluster 32
AIB cache uops per cluster 32
Intra-cluster bypass latency 0 cycles
Intra-lane transport latency 1 cycle
Cross-VP transport latency 0 cycles
Clock frequency 400 MHz

L1 Unified Cache
Size 32 KB
Associativity 32 (CAM tags)
Line size 32 B
Banks 4
Maximum bank access width 16 B
Store miss policy write-allocate/write-back
Load-use latency 2 cycles

Memory System
DRAM type DDR2
Data bus width 64 bits
DRAM clock frequency 200 MHz
Data bus frequency 400 MHz
Minimum load-use latency 35 processor cycles

Table 1: Default parameters for SCALE simulations.

fit into a compact area to reduce wire delays and design complex-
ity, and to support tiling of multiple SCALE processors on a CMP
for increased processing throughput. The clock frequency target is
400 MHz based on a 25 FO4 cycle time, chosen as a compromise
between performance, power, and design complexity.

4. Evaluation
This section contains an evaluation and analysis of SCALE run-

ning a diverse selection of embedded benchmark codes. We first
describe the simulation methodology and benchmarks, then discuss
how the benchmark codes were mapped to the VT architecture and
the resulting efficiency of execution.

4.1 Programming and Simulation Methodology
SCALE was designed to be compiler-friendly, and a C compiler

is under development. For the results in this paper, all VTU code
was hand-written in SCALE assembler (as in Figure 9) and linked
with C code compiled for the MIPS control processor using gcc.
The same binary code was used across all SCALE configurations.

A detailed cycle-level, execution-driven microarchitectural sim-
ulator has been developed based on the prototype design. De-
tails modeled in the VTU simulation include cluster execution of
micro-ops governed by execute-directives; cluster decoupling and
dynamic inter-cluster data dependency resolution; memory access
decoupling; operation of the vector-memory unit; operation of
the command management unit, including vector-fetch and thread-
fetch commands with AIB tag-checking and miss handling; and the
AIB fill unit and its contention for the primary cache.

The VTU simulation is complemented by a cycle-based mem-
ory system simulation which models the multi-requester, multi-
banked, non-blocking, highly-associative CAM-based cache and
a detailed memory controller and DRAM model. The cache ac-
curately models bank conflicts between different requesters; ex-
erts back-pressure in response to cache contention; tracks pend-
ing misses and merges in new requests; and models cache-line re-
fills and writebacks. The DRAM simulation is based on the DDR2
chips used in the prototype design, and models a 64-bit wide mem-
ory port clocked at 200 MHz (400 Mb/s/pin) including page refresh,
precharge and burst effects.

The default simulation parameters are based on the prototype and
are summarized in Table 1. An intra-lane transport from one cluster
to another has a latency of one cycle (i.e. there will be a one cycle

12

bubble between the producing instruction and the dependent in-
struction). Cross-VP transports are able to have zero cycle latency
because the clusters are physically closer together and there is less
fan-in for the receive operation. Cache accesses have a two cy-
cle latency (two bubble cycles between load and use), and accesses
which miss in the cache have a minimum latency of 35 cycles.

To show scaling effects, we model four SCALE configurations
with one, two, four, and eight lanes. The one, two, and four
lane configurations each include four cache banks and one 64-bit
DRAM port. For eight lanes, the memory system was doubled to
eight cache banks and two 64-bit memory ports to appropriately
match the increased compute bandwidth.

4.2 Benchmarks and Results
We have implemented a selection of benchmarks (Table 2) to

illustrate the key features of SCALE, including examples from net-
work processing, image processing, cryptography, and audio pro-
cessing. The majority of these benchmarks come from the EEMBC
benchmark suite. The EEMBC benchmarks may either be run “out-
of-the-box” (OTB) as compiled unmodified C code, or they may be
optimized (OPT) using assembly coding and arbitrary hand-tuning.
This enables a direct comparison of SCALE running hand-written
assembly code to optimized results from industry processors. Al-
though OPT results match the typical way in which these pro-
cessors are used, one drawback of this form of evaluation is that
performance depends greatly on programmer effort, especially as
EEMBC permits algorithmic and data-structure changes to many
of the benchmark kernels, and optimizations used for the reported
results are often unpublished. Also, not all of the EEMBC results
are available for all processors, as results are often submitted for
only one of the domain-specific suites (e.g., telecom).

We made algorithmic changes to several of the EEMBC bench-
marks: rotate blocks the algorithm to enable rotating an 8-bit
block completely in registers, pktflow implements the packet de-
scriptor queue using an array instead of a linked list, fir optimizes
the default algorithm to avoid copying and exploit reuse, fbital
uses a binary search to optimize the bit allocation, conven uses
bit packed input data to enable multiple bit-level operations to be
performed in parallel, and fft uses a radix-2 hybrid Stockham al-
gorithm to eliminate bit-reversal and increase vector lengths.

Figure 14 shows the simulated performance of the various
SCALE processor configurations relative to several reasonable
competitors from among those with the best published EEMBC
benchmark scores in each domain. For each of the different bench-
marks, Table 3 shows VP configuration and vector-length statistics,
and Tables 4 and 5 give statistics showing the effectiveness of the
SCALE control and data hierarchies. These are discussed further
in the following sections.

The AMD Au1100 was included to validate the SCALE con-
trol processor OTB performance, as it has a similar structure and
clock frequency, and also uses gcc. The Philips TriMedia TM
1300 is a five-issue VLIW processor with a 32-bit datapath. It runs
at 166 MHz and has a 32 KB L1 instruction cache and 16 KB L1
data cache, with a 32-bit memory port running at 125 MHz. The
Motorola PowerPC (MPC7447) is a four-issue out-of-order super-
scalar processor which runs at 1.3 GHz and has 32 KB separate L1
instruction and data caches, a 512 KB L2 cache, and a 64-bit mem-
ory port running at 133 MHz. The OPT results for the processor
use its Altivec SIMD unit which has a 128-bit datapath and four
execution units. The VIRAM processor [4] is a research vector
processor with four 64-bit lanes. VIRAM runs at 200 MHz and in-
cludes 13 MB of embedded DRAM supporting up to 256 bits each
of load and store data, and four independent addresses per cycle.

The BOPS Manta is a clustered VLIW DSP with four clusters each
capable of executing up to five instructions per cycle on 64-bit dat-
apaths. The Manta 2.0 runs at 136 MHz with 128 KB of on-chip
memory connected to a 32-bit memory port running at 136 MHz.
The TI TMS TMS320C6416 is a clustered VLIW DSP with two
clusters each capable of executing up to four instructions per cycle.
It runs at 720 MHz and has a 16 KB instruction cache and a 16 KB
data cache together with 1 MB of on-chip SRAM. The TI has a 64-
bit memory interface running at 720 MHz. Apart from the Au1100
and SCALE, all other processors implement SIMD operations on
packed subword values and these are widely exploited throughout
the benchmark set.

Overall, the results show that SCALE can flexibly provide com-
petitive performance with larger and more complex processors on a
wide range of codes from different domains, and that performance
generally scales well when adding new lanes. The results also illus-
trate the large speedups possible when algorithms are extensively
tuned for a highly parallel processor versus compiled from stan-
dard reference code. SCALE results for fft and viterbi are
not as competitive with the DSPs. This is partly due to these be-
ing preliminary versions of the code with further scope for tuning
(e.g., moving the current radix-2 FFT to radix-4 and using outer-
loop vectorization for viterbi) and partly due to the DSPs hav-
ing special support for these operations (e.g., complex multiply on
BOPS). We expect SCALE performance to increase significantly
with the addition of subword operations and with improvements to
the microarchitecture driven by these early results.

4.3 Mapping Parallelism to SCALE
The SCALE VT architecture allows software to explicitly en-

code the parallelism and locality available in an application. This
section evaluates the architecture’s expressiveness in mapping dif-
ferent types of code.

Data-Parallel Loops with No Control Flow

Data-parallel loops with no internal control flow, i.e. simple vec-
torizable loops, may be ported to the VT architecture in a similar
manner as other vector architectures. Vector-fetch commands en-
code the cross-iteration parallelism between blocks of instructions,
while vector-memory commands encode data locality and enable
optimized memory access. The EEMBC image processing bench-
marks (rgbcmy, rgbyiq, hpg) are examples of streaming vec-
torizable code for which SCALE is able to achieve high perfor-
mance that scales with the number of lanes in the VTU. A 4-lane
SCALE achieves performance competitive with VIRAM for rg-
byiq and rgbcmy despite having half the main memory band-
width, primarily because VIRAM is limited by strided accesses
while SCALE refills the cache with unit-stride bursts and then has
higher strided bandwidth into the cache. For the unit-stride hpg
benchmark, performance follows memory bandwidth with the 8-
lane SCALE approximately matching VIRAM.

Data-Parallel Loops with Conditionals

Traditional vector machines handle conditional code with predica-
tion (masking), but the VT architecture adds the ability to condi-
tionally branch. Predication can be less overhead for small condi-
tionals, but branching results in less work when conditional blocks
are large. EEMBC dither is an example of a large conditional
block in a data parallel loop. This benchmark converts a grey-scale
image to black and white, and the dithering algorithm handles white
pixels as a special case. In the SCALE code, each VP executes a
conditional fetch for each pixel, executing only 18 SCALE instruc-
tions for white pixels versus 49 for non-white pixels.

13

EEMBC Data OTB OPT Kernel Ops/ Mem B/ Loop Type Mem
Benchmarks Set Itr/Sec Itr/Sec Speedup Cycle Cycle DP DC XI DI DE FT VM VP Description

rgbcmy consumer - 126 1505 11.9 6.1 3.2 � � RGB to CMYK color conversion
rgbyiq consumer - 56 1777 31.7 9.9 3.1 � � RGB to YIQ color conversion
hpg consumer - 108 3317 30.6 9.5 2.0 � � � High pass grey-scale filter
text office - 299 435 1.5 0.3 0.0 � � Printer language parsing
dither office - 149 653 4.4 5.0 0.2 � � � � Floyd-Steinberg grey-scale dithering
rotate office - 704 10112 14.4 7.5 0.0 � � � Binary image 90 degree rotation
lookup network - 1663 8850 5.3 6.3 0.0 � � � IP route lookup using Patricia Trie
ospf network - 6346 7044 1.1 1.3 0.0 � � Dijkstra shortest path first

512KB 6694 127677 19.1 7.8 0.6
pktflow network 1MB 2330 25609 11.0 3.0 3.6 � � � � IP packet processing

2MB 1189 13473 11.3 3.1 3.7
pntrch auto - 8771 38744 4.4 2.3 0.0 � � Pointer chasing, searching linked list
fir auto - 56724 6105006 107.6 8.7 0.3 � � Finite impulse response filter

typ 860 20897 24.3 4.0 0.0
fbital telecom step 12523 281938 22.5 2.5 0.0 � � � � Bit allocation for DSL modems

pent 1304 60958 46.7 3.6 0.0
fft telecom all 6572 89713 13.6 6.1 0.0 � � 256-pt fixed-point complex FFT
viterb telecom all 1541 7522 4.9 4.2 0.0 � � Soft decision Viterbi decoder

data1 279339 3131115 11.2 4.8 0.2
autocor telecom data2 1888 64148 34.0 11.2 0.0 � � Fixed-point autocorrelation

data3 1980 78751 39.8 13.0 0.0
data1 2899 2447980 844.3 9.8 0.0

conven telecom data2 3361 3085229 917.8 10.4 0.0 � � � Convolutional encoder
data3 4259 3703703 869.4 9.5 0.1

Other Data OTB Total OPT Total Kernel Ops/ Mem B/ Loop Type Mem
Benchmarks Set Cycles Cycles Speedup Cycle Cycle DP DC XI DI DE FT VM VP Description

rijndael MiBench large 420.8M 219.0M 2.4 2.5 0.0 � � � Advanced Encryption Standard
sha MiBench large 141.3M 64.8M 2.2 1.8 0.0 � � � � Secure hash algorithm
qsort MiBench small 35.0M 21.4M 3.5 2.3 2.7 � � Quick sort of strings
adpcm enc Mediabench - 7.7M 4.3M 1.8 2.3 0.0 � � � Adaptive Differential PCM encode
adpcm dec Mediabench - 6.3M 1.0M 7.9 6.7 0.0 � � Adaptive Differential PCM decode
li SpecInt95 test 1,340.0M 1,151.7M 5.5 2.8 2.7 � � � � � � Lisp interpreter

Table 2: Benchmark Statistics and Characterization. All numbers are for the default SCALE configuration with four lanes. Results for multiple
input data sets are shown separately if there was significant variation, otherwise an all data set indicates results were similar across inputs. As is
standard practice, EEMBC statistics are for the kernel only. Total cycle numbers for non-EEMBC benchmarks are for the entire application, while
the remaining statistics are for the kernel of the benchmark only (the kernel excludes benchmark overhead code and for li the kernel consists of the
garbage collector only). The Mem B/Cycle column shows the DRAM bandwidth in bytes per cycle. The Loop Type column indicates the categories of
loops which were parallelized when mapping the benchmark to SCALE: [DP] data-parallel loop with no control flow, [DC] data-parallel loop with
conditional thread-fetches, [XI] loop with cross-iteration dependencies, [DI] data-parallel loop with inner-loop, [DE] loop with data-dependent exit
condition, and [FT] free-running threads. The Mem column indicates the types of memory accesses performed: [VM] for vector-memory accesses
and [VP] for individual VP loads and stores.

rgbcmy rgbyiq hpg text dither rotate lookup ospf pktflw pntrch fir fbital fft viterb autcor conven rijnd sha qsort adpcm.e adpcm.d li.gc avg.

VP config: private regs 2.0 1.0 5.0 2.7 10.0 16.0 8.0 1.0 5.0 7.0 4.0 3.0 9.0 3.6 3.0 6.0 13.0 1.0 26.0 4.0 1.0 4.4 6.2
VP config: shared regs 10.0 18.0 3.0 3.6 16.0 3.0 9.0 5.0 12.0 14.5 2.0 8.0 1.0 3.9 2.0 7.0 5.0 3.8 20.0 19.0 17.0 5.1 8.5
vlmax 52.0 120.0 60.0 90.8 28.1 24.0 40.0 108.0 56.0 40.0 64.0 116.0 36.0 49.8 124.0 40.0 28.0 113.5 12.0 48.0 96.0 112.7 66.3
vl 52.0 120.0 53.0 6.7 24.4 18.5 40.0 1.0 52.2 12.0 60.0 100.0 25.6 16.6 32.0 31.7 4.0 5.5 12.0 47.6 90.9 62.7 39.5

Table 3: VP configuration and vector-length statistics as averages of data recorded at each vector-fetch command. The VP configuration register
counts represent totals across all four clusters, vlmax indicates the average maximum vector length, and vl indicates the average vector length.

Loops with Cross-Iteration Dependencies

Many loops are non-vectorizable because they contain loop-carried
data dependencies from one iteration to the next. Nevertheless,
there may be ample loop parallelism available when there are oper-
ations in the loop which are not on the critical path of the cross-
iteration dependency. The vector-thread architecture allows the
parallelism to be exposed by making the cross-iteration (cross-
VP) data transfers explicit. In contrast to software pipelining for
a VLIW architecture, the vector-thread code need only schedule
instructions locally in one loop iteration. As the code executes on
a vector-thread machine, the dependencies between iterations re-
solve dynamically and the performance automatically adapts to the
software critical path and the available hardware resources.

Mediabench ADPCM contains one such loop (similar to Fig-
ure 8) with two loop-carried dependencies that can propagate in
parallel. The loop is mapped to a single SCALE AIB with 35 VP
instructions. Cross-iteration dependencies limit the initiation inter-

val to 5 cycles, yielding a maximum SCALE IPC of
��� 	 � ��� .

SCALE sustains an average of 6.7 compute-ops per cycle and
achieves a speedup of ��� � compared to the control processor.

The two MiBench cryptographic kernels, sha and rijndael,
have many loop-carried dependences. The sha mapping uses 5
cross-VP data transfers, while the rijndael mapping vector-
izes a short four-iteration inner loop. SCALE is able to exploit
instruction-level parallelism within each iteration of these kernels
by using multiple clusters, but, as shown in Figure 14, performance
also improves as more lanes are added.

Data-Parallel Loops with Inner-Loops

Often an inner loop has little or no available parallelism, but
the outer loop iterations can run concurrently. For example, the
EEMBC lookup code models a router using a Patricia Trie to
perform IP Route Lookup. The benchmark searches the trie for
each IP address in an input vector, with each lookup chasing point-
ers through around 5–12 nodes of the trie. Very little parallelism is

14

rgbcmy rgbyiq hpg
1

10

20

30

40

50

60

70
S

pe
ed

up
 v

s.
 S

C
A

LE
 M

IP
S

 C
on

tr
ol

 P
ro

ce
ss

or
 (

O
T

B
)

text dither rotate lookup ospf pktflow/2MB pntrch

1

5

10

15

20

25

30

51x

fir
1

40

80

120

160

200

fbital/pent fft viterb autocor/data3
1

10

20

30

40

50

60

70

80

90

100

110

120

S
pe

ed
up

 v
s.

 S
C

A
LE

 M
IP

S
 C

on
tr

ol
 P

ro
ce

ss
or

 (
O

T
B

)

conven/data3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

rijndael/large sha/large qsort/small adpcm_enc adpcm_dec li/test (GC)
0

1

2

3

4

5

6

7

8

9

AMD Au1100 396 MHz (OTB)
PowerPC 1.3 GHz (OTB)
TM1300 166 MHz (OPT)
VIRAM 200 MHz (OPT)
SCALE 1/2/4/8 400 MHz (OPT)

AMD Au1100 396 MHz (OTB)
PowerPC 1.3 GHz (OTB)
PowerPC 1.3 GHz (OPT)
SCALE 1/2/4/8 400 MHz (OPT)

SCALE 1/2/4/8 400 MHz (OPT)AMD Au1100 396 MHz (OTB)
PowerPC 1.3 GHz (OTB)
PowerPC 1.3 GHz (OPT)
VIRAM 200 MHz (OPT)
TI TMS320C6416 720 MHz (OPT)
BOPS Manta v2.0 136 MHz (OPT)
SCALE 1/2/4/8 400 MHz (OPT)

Figure 14: Performance Results: Twenty-two benchmarks illustrate the performance of four SCALE configurations (1 Lane, 2 Lanes, 4 Lanes,
8 Lanes) compared to various industry architectures. Speedup is relative to the SCALE MIPS control processor. The EEMBC benchmarks are
compared in terms of iterations per second, while the non-EEMBC benchmarks are compared in terms of cycles to complete the benchmark kernel.
These numbers correspond to the Kernel Speedup column in Table 2. For benchmarks with multiple input data sets, results for a single representative
data set are shown with the data set name indicated after a forward slash.

available in each lookup, but many lookups can run simultaneously.
In the SCALE implementation, each VP handles one IP lookup

using thread-fetches to traverse the trie. The ample thread paral-
lelism keeps the lanes busy executing 6.3 ops/cycle by interleaving
the execution of multiple VPs to hide memory latency. Vector-
fetches provide an advantage over a pure multithreaded machine by
efficiently distributing work to the VPs, avoiding contention for a
shared work queue. Additionally, vector-load commands optimize
the loading of IP addresses before the VP threads are launched.

Reductions and Data-Dependent Loop Exit Conditions

SCALE provides efficient support for arbitrary reduction opera-
tions by using shared registers to accumulate partial reduction re-
sults from multiple VPs on each lane. The shared registers are then
combined across all lanes at the end of the loop using the cross-VP
network. The pktflow code uses reductions to count the number
of packets processed.

Loops with data-dependent exit conditions (“while” loops) are
difficult to parallelize because the number of iterations is not known
in advance. For example, the strcmp and strcpy standard C li-
brary routines used in the text benchmark loop until the string
termination character is seen. The cross-VP network can be used
to communicate exit status across VPs but this serializes execution.
Alternatively, iterations can be executed speculatively in parallel
and then nullified after the correct exit iteration is determined. The
check to find the exit condition is coded as a cross-iteration reduc-
tion operation. The text benchmark executes most of its code on
the control processor, but uses this technique for the string routines
to attain a 1.5 overall speedup.

Free-Running Threads

When structured loop parallelism is not available, VPs can be used
to exploit arbitrary thread parallelism. With free-running threads,

the control processor interaction is eliminated. Each VP thread runs
in a continuous loop getting tasks from a work-queue accessed us-
ing atomic memory operations. An advantage of this method is that
it achieves good load-balancing between the VPs and can keep the
VTU constantly utilized.

Three benchmarks were mapped with free-running threads. The
pntrch benchmark searches for tokens in a doubly-linked list, and
allows up to five searches to execute in parallel. The qsort bench-
mark uses quick-sort to alphabetize a list of words. The SCALE
mapping recursively divides the input set and assigns VP threads
to sort partitions, using VP function calls to implement the com-
pare routine. The benchmark achieves 2.3 ops/cycle despite a high
cache miss rate. The ospf benchmark has little available paral-
lelism and the SCALE implementation maps the code to a single
VP to exploit ILP for a small speedup.

Mixed Parallelism

Some codes exploit a mixture of parallelism types to accelerate per-
formance and improve efficiency. The garbage collection portion of
the lisp interpreter (li) is split into two phases: mark, which tra-
verses a tree of currently live lisp nodes and sets a flag bit in every
visited node, and sweep, which scans through the array of nodes
and returns a linked list containing all of the unmarked nodes. Dur-
ing mark, the SCALE code sets up a queue of nodes to be pro-
cessed and uses a stripmine loop to examine the nodes, mark them,
and enqueue their children. In the sweep phase, VPs are assigned
segments of the allocation array and then each construct a list of un-
marked nodes within their segment in parallel. Once the VP threads
terminate, the control processor vector-fetches an AIB that stitches
the individual lists together using cross-VP data transfers, thus pro-
ducing the intended structure. Although the garbage collector has
a high cache miss rate, the high degree of parallelism exposed in
this way allows SCALE to sustain 2.8 operations/cycle and attain a

15

rgbcmy rgbyiq hpg text dither rotate lookup ospf pktflw pntrch fir fbital fft viterb autcor conven rijnd sha qsort adpcm.e adpcm.d li.gc

compute-ops / AIB 21.0 29.0 3.7 4.9 8.6 19.7 5.1 16.5 4.2 7.0 4.0 7.4 3.0 8.8 3.0 7.3 13.4 14.1 9.1 61.0 35.0 8.9
compute-ops / AIB tag-check 273.0 870.0 48.6 8.2 10.4 91.1 5.3 18.5 21.5 7.0 59.6 14.2 19.4 36.8 24.0 57.5 13.4 25.4 9.1 726.2 795.3 12.2
compute-ops / ctrl. proc. instr. 136.0 431.9 44.7 0.2 23.7 85.7 639.2 857.8 152.3 3189.6 18.1 62.8 5.8 4.9 23.6 19.7 8.9 3.9 5.8 229.2 186.0 122.7
thread-fetches / VP thread 0.0 0.0 0.0 0.0 3.8 0.0 26.7 3969.0 0.2 3023.7 0.0 1.0 0.0 0.0 0.0 0.0 0.9 0.0 113597.9 0.0 0.0 2.4
AIB cache miss percent 0.0 0.0 0.0 0.0 0.0 33.2 0.0 22.5 0.0 1.5 1.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.1 0.4

Table 4: Control hierarchy statistics. The first three rows show are the average number of compute-ops per executed AIB, per AIB tag-check
(caused by either a vector-fetch, VP-fetch, or thread-fetch), and per executed control processor instruction. The next row shows the average number
thread-fetches issued by each dynamic VP thread (launched by a vector-fetch or VP-fetch). The last row shows the miss rate for AIB tag-checks.

rgbcmy rgbyiq hpg text dither rotate lookup ospf pktflw pntrch fir fbital fft viterb autcor conven rijnd sha qsort adpcm.e adpcm.d li.gc avg.

sources: chain register 75.6 92.9 40.0 31.2 41.3 5.8 21.0 13.1 62.7 31.0 38.8 30.5 31.9 37.1 48.4 46.8 81.5 115.8 32.6 20.3 34.1 39.4 44.2
sources: register file 99.3 86.0 106.7 75.3 94.2 109.8 113.6 127.0 84.7 115.0 113.3 114.4 84.5 87.3 96.9 90.6 72.1 27.9 102.0 97.4 110.1 77.6 94.8
sources: immediate 28.4 31.0 6.7 13.1 27.2 64.0 21.8 52.9 45.7 38.8 2.6 30.2 7.5 13.9 0.0 50.0 23.1 38.9 66.6 35.4 38.7 71.7 32.2

dests: chain register 56.7 58.5 40.0 18.2 43.8 5.8 21.8 18.5 77.9 38.5 38.8 22.8 31.9 37.1 48.4 40.6 81.1 84.5 32.9 12.8 24.8 39.2 39.8
dests: register file 33.8 31.2 60.0 52.8 46.0 59.6 48.2 87.3 52.6 23.1 60.7 83.0 51.2 64.9 51.5 75.0 22.0 15.5 43.1 81.8 44.2 26.8 50.6

ext. cluster transports 52.0 51.6 53.3 43.0 45.9 34.5 36.6 53.5 57.6 30.9 38.8 90.7 31.9 74.1 48.5 40.6 29.5 68.3 13.9 72.7 21.7 56.3 47.5

load elements 14.2 10.3 20.0 14.6 14.7 5.7 14.8 21.8 22.0 15.4 19.0 15.1 20.7 13.9 25.0 12.5 28.4 15.4 18.1 6.4 9.3 13.0 15.9
load addresses 14.2 10.3 5.3 3.7 8.1 1.7 14.2 21.8 20.8 15.4 5.4 9.4 8.0 5.3 7.4 7.9 25.7 12.3 18.1 4.8 9.3 11.6 10.9
load bytes 14.2 10.3 20.0 14.6 30.2 5.7 59.1 87.4 54.2 61.6 75.9 30.2 41.3 38.4 49.9 25.1 113.4 61.7 64.9 21.4 27.9 52.0 43.6
load bytes from DRAM 14.2 10.3 7.5 0.0 2.9 0.3 0.2 0.0 115.3 0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 59.1 0.0 0.0 39.2 11.3

store elements 4.7 10.3 6.7 4.8 3.5 5.8 0.0 10.4 1.7 0.3 1.0 0.5 16.9 9.3 0.0 3.1 3.3 3.5 15.5 1.1 3.1 9.5 5.2
store addresses 4.7 10.3 1.8 1.4 1.8 5.8 0.0 10.4 0.4 0.3 0.5 0.1 4.2 6.8 0.0 0.8 1.6 3.0 15.5 1.1 3.1 9.5 3.8
store bytes 18.9 10.3 6.7 4.8 6.0 5.8 0.0 41.5 6.8 1.2 4.2 1.0 33.8 29.1 0.1 12.5 13.2 14.0 62.1 1.1 6.2 38.1 14.4
store bytes to DRAM 18.9 10.3 6.7 0.5 0.7 0.0 0.0 0.0 8.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.5 0.0 0.0 46.6 6.5

Table 5: Data hierarchy statistics. The counts are scaled to reflect averages per 100 compute-ops executed in each benchmark, and the average
(avg) column gives equal weight to all the benchmarks. Compute-op sources are broken down as coming from chain registers, the register file,
or immediates; and compute-op and writeback-op destinations are broken down as targeting chain registers or the register file. The ext. cluster
transports row reflects the number of results sent to external clusters. The load elements row reflects the number of elements accessed by either VP
loads or vector-loads, while the load addresses row reflects the number of cache accesses. The load bytes row reflects the total number of bytes for the
VP loads and vector-loads, while the load bytes from DRAM row reflects the DRAM bandwidth used to retrieve this data. The breakdown for stores
corresponds to the breakdown for loads.

speedup of 5.5 over the control processor alone.

4.4 Locality and Efficiency
The strength of the SCALE VT architecture is its ability to cap-

ture a wide variety of parallelism in applications while using simple
microarchitectural mechanisms that exploit locality in both control
and data hierarchies.

A VT machine amortizes control overhead by exploiting the lo-
cality exposed by AIBs and vector-fetch commands, and by factor-
ing out common control code to run on the control processor. A
vector-fetch broadcasts an AIB address to all lanes and each lane
performs a single tag-check to determine if the AIB is cached. On
a hit, an execute directive is sent to the clusters which then retrieve
the instructions within the AIB using a short (5-bit) index into the
small AIB cache. The cost of each instruction fetch is on par with
a register file read. On an AIB miss, a vector-fetch will broadcast
AIBs to refill all lanes simultaneously. The vector-fetch ensures an
AIB will be reused by each VP in a lane before any eviction is pos-
sible. When an AIB contains only a single instruction on a cluster,
a vector-fetch will keep the ALU control lines fixed while each VP
executes its operation, further reducing control energy.

As an example of amortizing control overhead, rbgyiq runs on
SCALE with a vector-length of 120 and vector-fetches an AIB with
29 VP instructions. Thus, each vector-fetch executes 3,480 instruc-
tions on the VTU, 870 instructions per tag-check in each lane. This
is an extreme example, but vector-fetches commonly execute 10s–
100s of instructions per tag-check even for non-vectorizable loops
such as adpcm (Table 4).

AIBs also help in the data hierarchy by allowing the use of chain
registers, which reduces register file energy; and sharing of tem-
porary registers, which reduces the register file size needed for a
large number of VPs. Table 5 shows that chain registers comprise

around 32% of all register sources and 44% of all register destina-
tions. Table 3 shows that across all benchmarks, VP configurations
use an average of 8.5 shared and 6.2 private registers, with an av-
erage maximum vector length above 64 (16 VPs per lane). The
significant variability in register requirements for different kernels
stresses the importance of allowing software to configure VPs with
just enough of each register type.

Vector-memory commands enforce spatial locality by moving
data between memory and the VP registers in groups. This im-
proves performance and saves memory system energy by avoid-
ing the additional arbitration, tag-checks, and bank conflicts that
would occur if each VP requested elements individually. Table 5
shows the reduction in memory addresses from vector-memory
commands. The maximum improvement is a factor of four, when
each vector cache access loads or stores one element per lane. The
VT architecture can exploit memory data-parallelism even in loops
with non-data-parallel compute. For example, the fbital, text,
and adpcm enc benchmarks use vector-memory commands to ac-
cess data for vector-fetched AIBs with cross-VP dependencies.

Table 5 shows that the SCALE data cache is effective at reduc-
ing DRAM bandwidth for most of the benchmarks. Two excep-
tions are the pktflow and li benchmarks for which the DRAM
bytes transferred exceed the total bytes accessed. The current de-
sign always transfers 32-byte lines on misses, but support for non-
allocating loads and stores could help reduce the bandwidth for
these benchmarks.

Clustering in SCALE is area and energy efficient and cluster de-
coupling improves performance. The clusters each contain only
a subset of all possible functional units and a small register file
with few ports, reducing size and wiring energy. Each cluster ex-
ecutes compute-ops and inter-cluster transport operations in order,
requiring only simple interlock logic with no inter-thread arbitra-

16

tion or dynamic inter-cluster bypass detection. Independent control
on each cluster enables decoupled cluster execution to hide large
inter-cluster or memory latencies. This provides a very cheap form
of SMT where each cluster can be executing code for different VPs
on the same cycle (Figure 12).

5. Related Work
The VT architecture draws from earlier vector architectures [9],

and like vector microprocessors [14, 6, 3] the SCALE VT imple-
mentation provides high throughput at low complexity. Similar to
CODE [5], SCALE uses decoupled clusters to simplify chaining
control and to reduce the cost of a large vector register file support-
ing many functional units. However, whereas CODE uses register
renaming to hide clusters from software, SCALE reduces hardware
complexity by exposing clustering and statically partitioning inter-
cluster transport and writeback operations.

The Imagine [8] stream processor is similar to vector machines,
with the main enhancement being the addition of stream load and
store instructions that pack and unpack arrays of multi-field records
stored in DRAM into multiple vector registers, one per field. In
comparison, SCALE uses a conventional cache to enable unit-
stride transfers from DRAM, and provides segment vector-memory
commands to transfer arrays of multi-field records between the
cache and VP registers. Like SCALE, Imagine improves register
file locality compared with traditional vector machines by execut-
ing all operations for one loop iteration before moving to the next.
However, Imagine instructions use a low-level VLIW ISA that ex-
poses machine details such as number of physical registers and
lanes, whereas SCALE provides a higher-level abstraction based
on VPs and AIBs.

VT enhances the traditional vector model to support loops with
cross-iteration dependencies and arbitrary internal control flow.
Chiueh’s multi-threaded vectorization [1] extends a vector ma-
chine to handle loop-carried dependencies, but is limited to a sin-
gle lane and requires the compiler to have detailed knowledge of
all functional unit latencies. Jesshope’s micro-threading [2] uses
a vector-fetch to launch micro-threads which each execute one
loop iteration, but whose execution is dynamically scheduled on
a per-instruction basis. In contrast to VT’s low-overhead direct
cross-VP data transfers, cross-iteration synchronization is done us-
ing full/empty bits on shared global registers. Like VT, Multi-
scalar [12] statically determines loop-carried register dependencies
and uses a ring to pass cross-iteration values. But Multiscalar uses
speculative execution with dynamic checks for memory dependen-
cies, while VT dispatches multiple non-speculative iterations si-
multaneously. Multiscalar can execute a wider range of loops in
parallel, but VT can execute many common parallel loop types with
much simpler logic and while using vector-memory operations.

Several other projects are developing processors capable of ex-
ploiting multiple forms of application parallelism. The Raw [13]
project connects a tiled array of simple processors. In contrast to
SCALE’s direct inter-cluster data transfers and cluster decoupling,
inter-tile communication on Raw is controlled by programmed
switch processors and must be statically scheduled to tolerate laten-
cies. The Smart Memories [7] project has developed an architecture
with configurable processing tiles which support different types of
parallelism, but it has different instruction sets for each type and
requires a reconfiguration step to switch modes. The TRIPS pro-
cessor [10] similarly must explicitly morph between instruction,
thread, and data parallelism modes. These mode switches limit the
ability to exploit multiple forms of parallelism at a fine-grain, in
contrast to SCALE which seamlessly combines vector and threaded
execution while also exploiting local instruction-level parallelism.

6. Conclusion
The vector-thread architectural paradigm allows software to

more efficiently encode the parallelism and locality present in many
applications, while the structure provided in the hardware-software
interface enables high-performance implementations that are effi-
cient in area and power. The VT architecture unifies support for all
types of parallelism and this flexibility enables new ways of paral-
lelizing codes, for example, by allowing vector-memory operations
to feed directly into threaded code. The SCALE prototype demon-
strates that the VT paradigm is well-suited to embedded applica-
tions, allowing a single relatively small design to provide competi-
tive performance across a range of application domains. Although
this paper has focused on applying VT to the embedded domain,
we anticipate that the vector-thread model will be widely applicable
in other domains including scientific computing, high-performance
graphics processing, and machine learning.

7. Acknowledgments
This work was funded in part by DARPA PAC/C award F30602-

00-2-0562, NSF CAREER award CCR-0093354, an NSF graduate
fellowship, donations from Infineon Corporation, and an equipment
donation from Intel Corporation.

8. References
[1] T.-C. Chiueh. Multi-threaded vectorization. In ISCA-18, May 1991.
[2] C. R. Jesshope. Implementing an efficient vector instruction set in a

chip multi-processor using micro-threaded pipelines. Australia
Computer Science Communications, 23(4):80–88, 2001.

[3] K. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh. A hardware
overview of SX-6 and SX-7 supercomputer. NEC Research &
Development Journal, 44(1):2–7, Jan 2003.

[4] C. Kozyrakis. Scalable vector media-processors for embedded
systems. PhD thesis, University of California at Berkeley, May 2002.

[5] C. Kozyrakis and D. Patterson. Overcoming the limitations of
conventional vector processors. In ISCA-30, June 2003.

[6] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanović,
N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton,
R. Thomas, N. Treuhaft, and K. Yelick. Scalable Processors in the
Billion-Transistor Era: IRAM. IEEE Computer, 30(9):75–78, Sept
1997.

[7] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz.
Smart Memories: A modular reconfigurable architecture. In Proc.
ISCA 27, pages 161–171, June 2000.

[8] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-Lagunas,
P. Mattson, and J. Owens. A bandwidth-efficient architecture for
media processing. In MICRO-31, Nov 1998.

[9] R. M. Russel. The CRAY-1 computer system. Communications of the
ACM, 21(1):63–72, Jan 1978.

[10] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. Moore. Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture. In ISCA-30, June 2003.

[11] J. E. Smith. Dynamic instruction scheduling and the Astronautics
ZS-1. IEEE Computer, 22(7):21–35, July 1989.

[12] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In ISCA-22, pages 414–425, June 1995.

[13] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal. Baring it all to software: Raw machines. IEEE
Computer, 30(9):86–93, Sept 1997.

[14] J. Wawrzynek, K. Asanović, B. Kingsbury, J. Beck, D. Johnson, and
N. Morgan. Spert-II: A vector microprocessor system. IEEE
Computer, 29(3):79–86, Mar 1996.

[15] M. Zhang and K. Asanović. Highly-associative caches for low-power
processors. In Kool Chips Workshop, MICRO-33, Dec 2000.

17

Appears in: The First International Conference on Mobile Systems, Applications, and Services, San Francisco, CA,
May 2003. Received Best Paper Award.

APPENDIX B - Energy Aware Lossless Data Compression

Kenneth Barr and Krste Asanović

MIT Laboratory for Computer Science
200 Technology Square, Cambridge, MA 02139

E-mail: {kbarr,krste}@lcs.mit.edu

Abstract

Wireless transmission of a bit can require over 1000 times more energy than a single 32-bit computation. It would
therefore seem desirable to perform significant computation to reduce the number of bits transmitted. If the energy
required to compress data is less than the energy required to send it, there is a net energy savings and consequently,
a longer battery life for portable computers. This paper reports on the energy of lossless data compressors as mea-
sured on a StrongARM SA-110 system. We show that with several typical compression tools, there is a net energy
increase when compression is applied before transmission. Reasons for this increase are explained, and hardware-
aware programming optimizations are demonstrated. When applied to Unix compress, these optimizations improve
energy efficiency by 51%. We also explore the fact that, for many usage models, compression and decompression
need not be performed by the same algorithm. By choosing the lowest-energy compressor and decompressor on the
test platform, rather than using default levels of compression, overall energy to send compressible web data can be
reduced 31%. Energy to send harder-to-compress English text can be reduced 57%. Compared with a system using a
single optimized application for both compression and decompression, the asymmetric scheme saves 11% or 12% of
the total energy depending on the dataset.

1 Introduction

Wireless communication is an essential component of
mobile computing, but the energy required for transmis-
sion of a single bit has been measured to be over 1000
times greater than a single 32-bit computation. Thus, if
1000 computation operations can compress data by even
one bit, energy should be saved. However, accessing
memory can be over 200 times more costly than compu-
tation on our test platform, and it is memory access that
dominates most lossless data compression algorithms. In
fact, even moderate compression (e.g. gzip -6) can
require so many memory accesses that one observes an
increase in the overall energy required to send certain
data.

While some types of data (e.g., audio and video) may
accept some degradation in quality, other data must be
transmitted faithfully with no loss of information. Fi-
delity can not be sacrificed to reduce energy as is done
in related work on lossy compression. Fortunately, an
understanding of a program’s behavior and the energy
required by major hardware components can be used to
reduce energy. The ability to efficiently perform efficient
lossless compression also provides second-order benefits
such as reduction in packet loss and less contention for

the fixed wireless bandwidth. Concretely, if n bits have
been compressed to m bits (n > m); c is the cost of
compression and decompression; and w is the cost per
bit of transmission and reception; compression is energy
efficient if c

n−m < w. This paper examines the elements
of this inequality and their relationships.

We measure the energy requirements of several loss-
less data compression schemes using the “Skiff” plat-
form developed by Compaq Cambridge Research Labs.
The Skiff is a StrongARM-based system designed with
energy measurement in mind. Energy usage for CPU,
memory, network card, and peripherals can be measured
individually. The platform is similar to the popular Com-
paq iPAQ handheld computer, so the results are relevant
to handheld hardware and developers of embedded soft-
ware. Several families of compression algorithms are an-
alyzed and characterized, and it is shown that carelessly
applying compression prior to transmission may cause an
overall energy increase. Behaviors and resource-usage
patterns are highlighted which allow for energy-efficient
lossless compression of data by applications or network
drivers. We focus on situations in which the mixture of
high energy network operations and low energy proces-
sor operations can be adjusted so that overall energy is
lower. This is possible even if the number of total opera-

18

tions, or time to complete them, increases. Finally, a new
energy-aware data compression strategy composed of an
asymmetric compressor and decompressor is presented
and measured.

Section 2 describes the experimental setup including
equipment, workloads, and the choice of compression
applications. Section 3 begins with the measurement
of an encouraging communication-computation gap, but
shows that modern compression tools do not exploit
the the low relative energy of computation versus com-
munication. Factors which limit energy reduction are
presented. Section 4 applies an understanding of these
factors to reduce overall energy of transmission though
hardware-conscious optimizations and asymmetric com-
pression choices. Section 5 discusses related work, and
Section 6 concludes.

2 Experimental setup

While simulators may be tuned to provide reason-
ably accurate estimations of a particular system’s energy,
observing real hardware ensures that complex interac-
tions of components are not overlooked or oversimpli-
fied. This section gives a brief description of our hard-
ware and software platform, the measurement methodol-
ogy, and benchmarks.

2.1 Equipment

The Compaq Personal Server, codenamed “Skiff,” is
essentially an initial, “spread-out” version of the Com-
paq iPAQ built for research purposes [13]. Powered by a
233 MHz StrongARM SA-110 [29, 17], the Skiff is com-
putationally similar to the popular Compaq iPAQ hand-
held (an SA-1110 [18] based device). For wireless net-
working, we add a five volt Enterasys 802.11b wireless
network card (part number CSIBD-AA). The Skiff has
32 MB of DRAM, support for the Universal Serial Bus,
a RS232 Serial Port, Ethernet, two Cardbus sockets, and
a variety of general purpose I/O. The Skiff PCB boasts
separate power planes for its CPU, memory and mem-
ory controller, and other peripherals allowing each to be
measured in isolation (Figure 1). With a Cardbus exten-
der card, one can isolate the power used by a wireless
network card as well. A programmable multimeter and
sense resistor provide a convenient way to examine en-
ergy in a active system with error less than 5% [47].

The Skiff runs ARM/Linux 2.4.2-rmk1-np1-hh2 with
PCMCIA Card Services 3.1.24. The Skiff has only 4 MB
of non-volatile flash memory to contain a file system, so
the root filesystem is mounted via NFS using the wired
ethernet port. For benchmarks which require file system
access, the executable and input dataset is brought into
RAM before timing begins. This is verified by observing

StrongARM
SA−110 CPU

Flash

DRAM
Mem. Controller

ethernet card
Wireless

Periperals:
wired ethernet,
Cardbus, RS232
Clocks, GPIO, et al.

R
cpu

R
peri

R
net

R
mem

12V DC

Regulator (3.3V)

Regulator (5V)

Regulator (2V)

GND

V21V

Figure 1. Simplified Skiff power schematic

the cessation of traffic on the network once the program
completes loading. I/O is conducted in memory using
a modified SPEC harness [42] to avoid the large cost of
accessing the network filesystem.

2.2 Benchmarks

Figure 2 shows the performance of several lossless
data compression applications using metrics of compres-
sion ratio, execution time, and static memory alloca-
tion. The datasets are the first megabyte (English books
and a bibliography) from the Calgary Corpus [5] and
one megabyte of easily compressible web data (mostly
HTML, Javascript, and CSS) obtained from the home-
pages of the Internet’s most popular websites [32, 25].
Graphics were omitted as they are usually in compressed
form already and can be recognized by application-layer
software via their file extensions. Most popular reposi-
tories ([4, 10, 11]) for comparison of data compression
do not examine the memory footprint required for com-
pression or decompression. Though static memory usage
may not always reflect the size of the application’s work-
ing set, it is an essential consideration in mobile com-
puting where memory is a more precious resource. A
detailed look at the memory used by each application,
and its effect on time, compression ratio, and energy will
be presented in Section 3.3.

Figure 2 confirms that we have chosen an array of ap-

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Compression Ratio

R
at

io
 (

co
m

p
re

ss
ed

 s
iz

e
/ o

ri
g

in
al

 s
iz

e)

bzip
2

co
m

pre
ss

lzo

ppm
d

zli
b

Application

Text
Web

compress decompress
0

5

10

15

T
im

e
(s

ec
o

n
d

s)
Operation

Time (Text)

bzip2
compress
lzo
ppmd
zlib

compress decompress
0

5

10

15

T
im

e
(s

ec
o

n
d

s)

Operation

Time (Web)

compress decompress
0

5

10

15

20

25

L
o

g
2 (

B
yt

es
)

Operation

Static Memory Allocation (Both)

Figure 2. Benchmark comparison by traditional metrics

plications that span a range of compression ratios and
execution times. Each application represents a differ-
ent family of compression algorithms as noted in Table
1. Consideration was also given to popularity and doc-
umentation, as well as quality, parameterizability, and
portability of the source code. The table includes the
default parameters used with each program. To avoid
unduly handicapping any algorithm, it is important to
work with well-implemented code. Mature applications
such as compress, bzip2, and zlib reflect a series of opti-
mizations that have been applied since their introduction.
While PPMd is an experimental program, it is effectively
an optimization of the Prediction by Partial Match (PPM)
compressors that came before it. LZO represents an ap-
proach for achieving great speed with LZ77. Each of the
five applications is summarized below assuming some
familiarity with each algorithm. A more complete treat-
ment with citations may be found in [36].

zlib combines LZ77 and Huffman coding to form an
algorithm known as “deflate.” The LZ77 sliding win-
dow size and hash table memory size may be set by the
user. LZ77 tries to replace a string of symbols with a
pointer to the longest prefix match previously encoun-
tered. A larger window improves the ability to find such
a match. More memory allows for less collisions in the
zlib hash table. Users may also set an “effort” parame-
ter which dictates how hard the compressor should try to
extend matches it finds in its history buffer. zlib is the
library form of the popular gzip utility (the library form
was chosen as it provides more options for trading off
memory and performance). Unless specified, it is con-
figured with parameters similar to gzip.

LZO is a compression library meant for “real-time”
compression. Like zlib, it uses LZ77 with a hash table
to perform searches. LZO is unique in that its hash table
can be sized to fit in 16KB of memory so it can remain
in cache. Its small footprint, coding style (it is written
completely with macros to avoid function call overhead),
and ability to read and write data “in-place” without ad-
ditional copies make LZO extremely fast. In the interest
of speed, its hash table can only store pointers to 4096

matches, and no effort is made to find the longest match.
Match length and offset are encoded more simply than in
zlib.

compress is a popular Unix utility. It implements the
LZW algorithm with codewords beginning at nine bits.
Though a bit is wasted for each single 8-bit character,
once longer strings have been seen, they may be replaced
with short codes. When all nine-bit codes have been
used, the codebook size is doubled and the use of ten-
bit codes begins. This doubling continues until codes are
sixteen bits long. The dictionary becomes static once it
is entirely full. Whenever compress detects decreasing
compression ratio, the dictionary is cleared and the pro-
cess beings anew. Dictionary entries are stored in a hash
table. Hashing allows an average constant-time access
to any entry, but has the disadvantage of poor spatial lo-
cality when combining multiple entries to form a string.
Despite the random dispersal of codes to the table, com-
mon strings may benefit from temporal locality. To re-
duce collisions, the table should be sparsely filled which
results in wasted memory. During decompression, each
table entry may be inserted without collision.

PPMd is a recent implementation of the PPM algo-
rithm. Windows users may unknowingly be using PPMd
as it is the text compression engine in the popular Win-
RAR program. PPM takes advantage of the fact that the
occurrence of a certain symbol can be highly dependent
on its context (the string of symbols which preceded it).
The PPM scheme maintains such context information to
estimate the probability of the next input symbol to ap-
pear. An arithmetic coder uses this stream of probabil-
ities to efficiently code the source. As the model be-
comes more accurate, the occurrence of a highly likely
symbol requires fewer bits to encode. Clearly, longer
contexts will improve the probability estimation, but it
requires time to amass large contexts (this is similar to
the startup effect in LZ78). To account for this, “es-
cape symbols” exist to progressively step down to shorter
context lengths. This introduces a trade-off in which en-
coding a long series of escape symbols can require more
space than is saved by the use of large contexts. Stor-

20

Application (Version) Source Algorithm Notes (defaults)

bzip2 (0.1pl2) [37] BWT RLE→BWT→MTF→RLE→HUFF (900k block size)
compress (4.0) [21] LZW modified Unix Compress based on Spec95 (16 bit codes (maximum))
LZO (1.07) [33] LZ77 Favors speed over compression (lzo1x 12. 4K entry hash table uses 16KB)
PPMd (variant I) [40] PPM used in “rar” compressor (Order 4, 10MB memory, restart model)
zlib (1.1.4) [9] LZ77 library form of gzip (Chaining level 6 / 32K Window / 32K Hash Table)

Table 1. Compression applications and their algorithms

ing and searching through each context accounts for the
large memory requirements of PPM schemes. The length
of the maximum context can be varied by PPMd, but
defaults to four. When the context tree fills up, PPMd
can clear and start from scratch, freeze the model and
continue statically, or prune sections of the tree until the
model fits into memory.

bzip2 is based on the Burrows Wheeler Transform
(BWT) [8]. The BWT converts a block S of length n
into a pair consisting of a permutation of S (call it L)
and an integer in the interval [0..n − 1]. More impor-
tant than the details of the transformation is its effect.
The transform collects groups of identical input symbols
such that the probability of finding a symbol s in a re-
gion of L is very high if another instance of s is nearby.
Such anL can be processed with a “move-to-front” coder
which will yield a series consisting of a small alphabet:
runs of zeros punctuated with low numbers which in turn
can be processed with a Huffman or Arithmetic coder.
For processing efficiency, long runs can be filtered with a
run length encoder. As block size is increased, compres-
sion ratio improves. Diminishing returns (with English
text) do not occur until block size reaches several tens of
megabytes. Unlike the other algorithms, one could con-
sider BWT to take advantage of symbols which appear in
the “future”, not just those that have passed. bzip2 reads
in blocks of data, run-length-encoding them to improve
sort speed. It then applies the BWT and uses a variant of
move-to-front coding to produce a compressible stream.
Though the alphabet may be large, codes are only created
for symbols in use. This stream is run-length encoded to
remove any long runs of zeros. Finally Huffman encod-
ing is applied. To speed sorting, bzip2 applies a modi-
fied quicksort which has memory requirements over five
times the size of the block.

2.3 Performance and implementation concerns

A compression algorithm may be implemented with
many different, yet reasonable, data structures (including
binary tree, splay tree, trie, hash table, and list) and yield
vastly different performance results [3]. The quality and
applicability of the implementation is as important as the
underlying algorithm. This section has presented imple-
mentations from each algorithmic family. By choosing

a top representative in each family, the implementation
playing field is leveled, making it easier to gain insight
into the underlying algorithm and its influence on energy.
Nevertheless, it is likely that each application can be op-
timized further (Section 4.1 shows the benefit of opti-
mization) or use a more uniform style of I/O. Thus, eval-
uation must focus on inherent patterns rather than mak-
ing a direct quantitative comparison.

3 Observed Energy of Communication,
Computation, and Compression

In this section, we observe that over 1000 32 bit ADD
instructions can be executed by the Skiff with the same
amount of energy it requires to send a single bit via wire-
less ethernet. This fact motivates the investigation of pre-
transmission compression of data to reduce overall en-
ergy. Initial experiments reveal that reducing the number
of bits to send does not always reduce the total energy of
the task. This section elaborates on both of these points
which necessitate the in-depth experiments of Section
3.3.

3.1 Raw Communication-to-Computation
Energy Ratio

To quantify the gap between wireless communication
and computation, we have measured wireless idle, send,
and receive energies on the Skiff platform. To eliminate
competition for wireless bandwidth from other devices
in the lab, we established a dedicated channel and ran the
network in ad-hoc mode consisting of only two wireless
nodes. We streamed UDP packets from one node to the
other; UDP was used to eliminate the effects of waiting
for an ACK. This also insures that receive tests measure
only receive energy and send tests measure only send en-
ergy. This setup is intended to find the minimum network
energy by removing arbitration delay and the energy of
TCP overhead to avoid biasing our results.

With the measured energy of the transmission and the
size of data file, the energy required to send or receive a
bit can be derived. The results of these network bench-
marks appear in Figure 3 and are consistent with other
studies [20]. The card is set to its maximum speed of

21

11 Mb/s and two tests are conducted. In the first, the
Skiff communicates with a wireless card mere inches
away and achieves 5.70 Mb/sec. In the second, the sec-
ond node is placed as far from the Skiff as possible with-
out losing packets. Only 2.85 Mb/sec is achieved. These
two cases bound the performance of our 11 Mb/sec wire-
less card; typical performance should be somewhere be-
tween them.

Figure 3. Measured communication energy of
Enterasys wireless NIC

Next, a microbenchmark is used to determine the min-
imum energy for an ADD instruction. We use Linux boot
code to bootstrap the processor; select a cache configu-
ration; and launch assembly code unencumbered by an
operating system. One thousand ADD instructions are
followed by an unconditional branch which repeats them.
This code was chosen and written in assembly language
to minimize effects of the branch. Once the program has
been loaded into instruction cache, the energy used by
the processor for a single add is 0.86 nJ.

From these initial network and ADD measure-
ments, we can conclude that sending a single bit is
roughly equivalent to performing 485–1267 ADD op-
erations depending on the quality of the network link
(4.17×10−7 J

0.86×10−9 J ≈ 485 or 1.09×10−6 J
0.86×10−9 J ≈ 1267). This gap of

2–3 orders of magnitude suggests that much additional
effort can be spent trying to reduce a file’s size before it
is sent or received. But the issue is not so simple.

3.2 Application-Level Communication-to-
Computation Energy Ratio

On the Skiff platform, memory, peripherals, and the
network card remain powered on even when they are
not active, consuming a fixed energy overhead. They
may even switch when not in use in response to changes
on shared buses. The energy used by these compo-
nents during the ADD loop is significant and is shown

in Table 2. Once a task-switching operating system is
loaded and other applications vie for processing time,
the communication-to-computation energy ratio will de-
crease further. Finally, the applications examined in this
paper are more than a mere series of ADDs; the variety
of instructions (especially Loads and Stores) in compres-
sion applications shrinks the ratio further.

Network card 0.43 nJ
CPU 0.86 nJ
Mem 1.10 nJ
Periph 4.20 nJ

Total 6.59 nJ

Table 2. Total Energy of an ADD

The first row of Figures 4 and 5 show the energy re-
quired to compress our text and web dataset and transmit
it via wireless ethernet. To avoid punishing the bench-
marks for the Skiff’s high power, idle energy has been
removed from the peripheral component so that it repre-
sents only the amount of additional energy (due to bus
toggling and arbitration effects) over and above the en-
ergy that would have been consumed by the peripherals
remaining idle for the duration of the application. Idle
energy is not removed from the memory and CPU por-
tions as they are required to be active for the duration of
the application. The network is assumed to consume no
power until it is turned on to send or receive data. The
popular compression applications discussed in Section
2.2 are used with their default parameters, and the right-
most bar shows the energy of merely copying the uncom-
pressed data over the network. Along with energy due to
default operation (labeled “bzip2-900,” “compress-16,”
“lzo-16,” “ppmd-10240,” and “zlib-6”), the figures in-
clude energy for several invocations of each application
with varying parameters. bzip2 is run with both the de-
fault 900 KB block sizes as well as its smallest 100 KB
block. compress is also run at both ends of its spectrum
(12 bit and 16 bit maximum codeword size). LZO runs
in just 16 KB of working memory. PPMd uses 10 MB,
1 MB, and 32 KB memory with the cutoff mechanism for
freeing space (as it is faster than the default “restart” in
low-memory configurations). zlib is run in a configura-
tion similar to gzip. The numeric suffix (9, 6, or 1) refers
to effort level and is analogous to gzip’s commandline
option. These various invocations will be studied in sec-
tion 3.3.3.

While most compressors do well with the web data, in
several cases the energy to compress the file approaches
or outweighs the energy to transmit it. This problem is
even worse for the harder-to-compress text data. The sec-
ond row of Figures 4 and 5 shows the reverse operation:
receiving data via wireless ethernet and decompressing
it. The decompression operation is usually less costly

22

0

2

4

6

8

10

12
Compress + Send (2.85Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pr
es

s−
16

 co
mpr

es
s−

12

 lz

o−
16

 pp
md−

10
24

0

 p
pm

d−
10

24

 p
pm

d−
32

 zl

ib−
9

 zl

ib−
6

zli

b−
1

 n

on
e

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Compress + Send Energy (5.70Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pr
es

s−
16

 co
mpr

es
s−

12

 lz

o−
16

 pp
md−

10
24

0

 p
pm

d−
10

24

 p
pm

d−
32

 zl

ib−
9

 zl

ib−
6

zli

b−
1

 n

on
e

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (2.85Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pr
es

s−
16

 co
mpr

es
s−

12

 lz

o−
16

 pp
md−

10
24

0

 p
pm

d−
10

24

 p
pm

d−
32

 zl

ib−
9

 zl

ib−
6

zli

b−
1

 n

on
e

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (5.70Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

 c
om

pr
es

s−
16

 co
mpr

es
s−

12

 lz

o−
16

 pp
md−

10
24

0

 p
pm

d−
10

24

 p
pm

d−
32

 zl

ib−
9

 zl

ib−
6

zli

b−
1

 n

on
e

Application

Peripherals
Network
Memory
CPU

Figure 4. Energy required to transmit 1MB compressible text data

0

2

4

6

8

10

12
Compress + Send (2.85Mb/sec)

Jo
ul

es

 b
zip

2−900

 b
zip

2−100

co
mpress

−16

 co
mpress

−12

 lz

o−16

 ppmd−10240

 p
pmd−1024

 p
pmd−32

 zl

ib−9

 zl

ib−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Compress + Send Energy (5.70Mb/sec)

Jo
ul

es

 b
zip

2−900

 b
zip

2−100

co
mpress

−16

 co
mpress

−12

 lz

o−16

 ppmd−10240

 p
pmd−1024

 p
pmd−32

 zl

ib−9

 zl

ib−6

zli

b−1

 n

one

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (2.85Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

co
mpr

es
s−

16

 co
mpr

es
s−

12

 lz

o−
16

 pp
md−

10
24

0

 p
pm

d−
10

24

 p
pm

d−
32

 zl

ib−
9

 zl

ib−
6

zli

b−
1

 n

on
e

Application

Peripherals
Network
Memory
CPU

0

2

4

6

8

10

12
Receive + Decompress (5.70Mb/sec)

Jo
ul

es

 b
zip

2−
90

0

 b
zip

2−
10

0

co
mpr

es
s−

16

 co
mpr

es
s−

12

 lz

o−
16

 pp
md−

10
24

0

 p
pm

d−
10

24

 p
pm

d−
32

 zl

ib−
9

 zl

ib−
6

zli

b−
1

 n

on
e

Application

Peripherals
Network
Memory
CPU

Figure 5. Energy required to transmit 1MB compressible web data

23

than compression in terms of energy, a fact which will be
helpful in choosing a low-energy, asymmetric, lossless
compression scheme. As an aside, we have seen that as
transmission speed increases, the value of reducing wire-
less energy through data compression is less. Thus, even
when compressing and sending data appears to require
the same energy as sending uncompressed data, it is ben-
eficial to apply compression for the greater good: more
shared bandwidth will be available to all devices allow-
ing them to send data faster and with less energy. Section
3.3 will discuss how such high net energy is possible de-
spite the motivating observations.

3.3 Energy analysis of popular compressors

We will look deeper into the applications to discover
why they cannot exploit the communication - computa-
tion energy gap. To perform this analysis, we rely on em-
pirical observations on the Skiff platform as well as the
execution-driven simulator known as SimpleScalar [7].
Though SimpleScalar is inherently an out-of-order, su-
perscalar simulator, it has been modified to read statically
linked ARM binaries and model the five-stage, in-order
pipeline of the SA-110x [2]. As SimpleScalar is beta
software we will handle the statistics it reports with cau-
tion, using them to explain the traits of the compression
applications rather than to describe their precise execu-
tion on a Skiff. Namely, high instruction counts and high
cost of memory access lead to poor energy efficiency.

3.3.1 Instruction count

We begin by looking at the number of instructions each
requires to remove and restore a bit (Table 3). The range
of instruction counts is one empirical indication of the
applications’ varying complexity. The excellent perfor-
mance of LZO is due in part to its implementation as
a single function, thus there is no function call over-
head. In addition, LZO avoids superfluous copying due
to buffering (in contrast with compress and zlib). As we
will see, the number of memory accesses plays a large
role in determining the speed and energy of an applica-
tion. Each program contains roughly the same percent-
age of loads and stores, but the great difference in dy-
namic number of instructions means that programs such
as bzip2 and PPMd (each executing over 1 billion in-
structions) execute more total instructions and therefore
have the most memory traffic.

3.3.2 Memory hierarchy

One noticeable similarity of the bars in Figures 4 and 5 is
that the memory requires more energy than the processor.
To pinpoint the reason for this, microbenchmarks were
run on the Skiff memory system.

The SA-110 data cache is 16 KB. It has 32-way as-
sociativity and 16 sets. Each block is 32 bytes. Data is
evicted at half-block granularity and moves to a 16 entry-
by-16 byte write buffer. The write buffer also collects
stores that miss in the cache (the cache is writeback/non-
write-allocate). The store buffer can merge stores to the
same entry.

The hit benchmark accesses the same location in
memory in an infinite loop. The miss benchmark consec-
utively accesses the entire cache with a 32 byte stride fol-
lowed by the same access pattern offset by 16 KB. Write-
backs are measured with a similar pattern, but each load
is followed by a store to the same location that dirties the
block forcing a writeback the next time that location is
read. Store hit energy is subtracted from the writeback
energy. The output of the compiler is examined to in-
sure the correct number of load or store instructions is
generated. Address generation instructions are ignored
for miss benchmarks as their energy is minimal com-
pared to that of a memory access. When measuring store
misses in this fashion (with a 32 byte stride), the worse-
case behavior of the SA-110’s store buffer is exposed as
no writes can be combined. In the best case, misses to
the the same buffered region can have energy similar to
a store hit, but in practice, the majority of store misses
for the compression applications are unable to take ad-
vantage of batching writes in the store buffer.

Table 4 shows that hitting in the cache requires more
energy than an ADD (Table 2), and a cache miss requires
up to 145 times the energy of an ADD. Store misses are
less expensive as the SA-110 has a store buffer to batch
accesses to memory. To minimize energy, then, we must
seek to minimize cache-misses which require prolonged
access to higher voltage components.

3.3.3 Minimizing memory access energy

One way to minimize misses is to reduce the memory re-
quirements of the application. Figure 6 shows the effect
of varying memory size on compression/decompression
time and compression ratio. Looking back at Figures 4
and 5, we see the energy implications of choosing the
right amount of memory. Most importantly, we see that
merely choosing the fastest or best-compressing appli-
cation does not result in lowest overall energy. Table 5
notes the throughput of each application; we see that with
the Skiff’s processor, several applications have difficulty
meeting the line rate of the network which may preclude
their use in latency-critical applications.

In the case of compress and bzip2, a larger memory
footprint stores more information about the data and can
be used to improve compression ratio. However, storing
more information means less of the data fits in the cache
leading to more misses, longer runtime and hence more

24

bzip2 compress LZO PPMd zlib

Compress: instructions per bit removed (Text Data) 116 10 7 76 74
Decompress: instructions per bit restored (Text Data) 31 6 2 10 5

Compress: instructions per bit removed (Web Data) 284 9 2 60 23
Decompress: instructions per bit restored (Web Data) 20 5 1 79 3

Table 3. Instructions per bit

0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

10

12

Ratio (compressed size / original size)

C
o

m
p

re
ss

io
n

 T
im

e
(s

ec
o

n
d

s)

Observed data compression performance

bzip2
compress
lzo
PPMd
zlib

bzip2

PPMd

compress
LZO

zlib

0.2 0.3 0.4 0.5 0.6 0.7

0

2

4

6

8

10

12

Ratio (compressed size / original size)

D
ec

o
m

p
re

ss
io

n
 T

im
e

(s
ec

o
n

d
s)

Observed data decompression performance

bzip2
compress
lzo
PPMd
zlib

zlib

bzip2

PPMd

compress

LZO

Figure 6. Memory, time, and ratio (Text data). Memory footprint is indicated by area of circle; footprints shown
range from 3KB - 8MB

Cycles Energy (nJ)

Load Hit 1 2.72
Load Miss 80 124.89
Writeback 107 180.53

Store Hit 1 2.41
Store Miss 33 78.34

ADD 1 0.86

Table 4. Measured memory energy vs. ADD energy

energy. This tradeoff need not apply in the case where
more memory allows a more efficient data structure or
algorithm. For example, bzip2 uses a large amount of
memory, but for good reason. While we were able to
implement its sort with the quicksort routine from the
standard C library to save significant memory, the com-
pression takes over 2.5 times as long due to large con-
stants in the runtime of the more traditional quicksort in
the standard library. This slowdown occurs even when
16 KB block sizes [38] are used to further reduce mem-
ory requirements. Once PPMd has enough memory to
do useful work, more context information can be stored
and less complicated escape handling is necessary.

The widely scattered performance of zlib, even with
similar footprints, suggest that one must be careful in

choosing parameters for this library to achieve the de-
sired goal (speed or compression ratio). Increasing win-
dow size effects compression; for a given window, a
larger hash table improves speed. Thus, the net ef-
fect of more memory is variable. The choice is espe-
cially important if memory is constrained as certain win-
dow/memory combinations are inefficient for a particular
speed or ratio.

The decompression side of the figure underscores the
valuable asymmetry of some of the applications. Often
decompressing data is a simpler operation than compres-
sion which requires less memory (as in bzip2 and zlib).
The simple task requires a relatively constant amount of
time as there is less work to do: no sorting for bzip2
and no searching though a history buffer for zlib, LZO,
and compress because all the information to decompress
a file is explicit. The contrast between compression and
decompression for zlib is especially large. PPM imple-
mentations must go through the same procedure to de-
compress a file, undoing the arithmetic coding and build-
ing a model to keep its probability counts in sync with
the compressor’s. The arithmetic coder/decoder used in
PPMd requires more time to decode than encode, so de-
compression requires more time.

Each of the applications examined allocates fixed-size

25

bzip2 compress LZO PPMd zlib

Compress read throughput (Text data) 0.91 3.70 24.22 1.57 0.82
Decompress write throughput (Text data) 2.59 11.65 109.44 1.42 41.15

Compress read throughput (Web data) 0.58 4.15 50.05 2.00 3.29
Decompress write throughput (Web data) 3.25 27.43 150.70 1.75 61.29

Table 5. Application throughputs (Mb/sec)

structures regardless of the input data length. Thus, in
several cases more memory is set aside than is actually
required. However, a large memory footprint may not
be detrimental to an application if its current working set
fits in the cache. The simulator was used to gather cache
statistics. PPM and BWT are known to be quite mem-
ory intensive. Indeed, PPMd and bzip2 access the data
cache 1–2 orders of magnitude more often than the other
benchmarks. zlib accesses data cache almost as much as
PPMd and bzip2 during compression, but drops from 150
million accesses to 8.2 million during decompression.
Though LZ77 is local by nature, the large window and
data structures hurt its cache performance for zlib during
the compression phase. LZO also uses LZ77, but is de-
signed to require just 16KB of memory and goes to main
memory over five times less often than the next fastest
application. The followup to the SA-110 (the SA-1110
used in Compaq’s iPAQ handheld computer) has only an
8KB data cache which would exaggerate any penalties
observed here. Though large, low-power caches are be-
coming possible (the X-Scale has two 32KB caches), as
long as the energy of going to main memory remains so
much higher, we must be concerned with cache misses.

3.4 Summary

On the Skiff, compression and decompression energy
are roughly proportional to execution time. We have seen
that the Skiff requires lots of energy to work with ag-
gressively compressed data due to the amount of high-
latency/high-power memory references. However using
the fastest-running compressor or decompressor is not
necessarily the best choice to minimize total transmis-
sion energy. For example, during decompression both
zlib and compress run slower than LZO, but they re-
ceive fewer bits due to better compression so total en-
ergy is less than LZO. These applications successfully
walk the tightrope of computation versus communication
cost. Despite the greater energy needed to decompress
the data, the decrease in receive energy makes the net
operation a win. More importantly, we have shown that
reducing energy is not as simple as choosing the fastest
or best-compressing program.

We can generalize the results obtained on the Skiff in
the following fashion. Memory energy is some multiple

of CPU energy. Network energy (send and receive) is a
far greater multiple of CPU energy. It is difficult to pre-
dict how quickly energy of components will change over
time. Even predicting whether a certain component’s en-
ergy usage will grow or shrink can be difficult. Many
researchers envision ad-hoc networks made of nearby
nodes. Such a topology, in which only short-distance
wireless communication is necessary, could reduce the
energy of the network interface relative to the CPU and
memory. On the other hand, for a given mobile CPU de-
sign, planned manufacturing improvements may lower
its relative power and energy. Processors once used only
in desktop computers are being recast as mobile proces-
sors. Though their power may be much larger than that
of the Skiff’s StrongARM, higher clock speeds may re-
duce energy. If one subscribes to the belief that CPU en-
ergy will steadily decrease while memory and network
energy remain constant, then bzip2 and PPMd become
viable compressors. If both memory and CPU energy de-
crease, then current low-energy compression tools (com-
press and LZO) can even be surpassed by their compu-
tation and memory intensive peers. However, if only
network energy decreases while the CPU and memory
systems remain static, energy-conscious systems may
forego compression altogether as it now requires more
energy than transmitting raw data. Thus, it is important
for software developers to be aware of such hardware
effects if they wish to keep compression energy as low
as possible. Awareness of the type of data to be trans-
mitted is important as well. For example, transmitting
our world-wide-web data required less energy in general
than the text data. Trying to compress pre-compressed
data (not shown) requires significantly more energy and
is usually futile.

4 Results

We have seen energy can be saved by compress-
ing files before transmitting them over the network, but
one must be mindful of the energy required to do so.
Compression and decompression energy may be mini-
mized through wise use of memory (including efficient
data structures and/or sacrificing compression ratio for
cacheability). One must be aware of evolving hardware’s
effect on overall energy. Finally, knowledge of com-

26

pression and decompression energy for a given system
permits the use of asymmetric compression in which the
lowest energy application for compression is paired with
the lowest energy application for decompression.

4.1 Understanding cache behavior

Figure 7 shows the compression energy of several
successive optimizations of the compress program. The
baseline implementation is itself an optimization of the
original compress code. The number preceding the dash
refers to the maximum length of codewords. The graph
illustrates the need to be aware of the cache behavior of
an application in order to minimize energy. The data
structure of compress consists of two arrays: a hash ta-
ble to store symbols and prefixes, and a code table to
associate codes with hash table indexes. The tables are
initially stored back-to-back in memory. When a new
symbol is read from the input, a single index is used to
retrieve corresponding entries from each array. The “16-
merge” version combines the two tables to form an array
of structs. Thus, the entry from the code table is brought
into the cache when the hash entry is read. The reduction
in energy is negligible: though one type of miss has been
eliminated, the program is actually dominated by a sec-
ond type of miss: the probing of the hash table for free
entries. The Skiff data cache is small (16KB) compared
to the size of the hash table (≈270KB), thus the random
indexing into the hash table results in a large number
of misses. A more useful energy and performance opti-
mization is to make the hash table more sparse. This ad-
mits fewer collisions which results in fewer probes and
thus a smaller number of cache misses. As long as the
extra memory is available to enable this optimization,
about 0.53 Joules are saved compared with applying no
compression at all. This is shown by the “16-sparse” bar
in the figure. The baseline and “16-merge” implemen-
tations require more energy than sending uncompressed
data. A 12-bit version of compress is shown as well.
Even when peripheral overhead energy is disregarded,
it outperforms or ties the 16-bit schemes as its reduced
memory energy due to fewer misses makes up for poorer
compression.

Another way to reduce cache misses is to fit both ta-
bles completely in the cache. Compare the following two
structures:

struct entry{ struct entry{
int fcode; signed fcode:20;
unsigned short code; unsigned code:12;

}table[SIZE]; }table[SIZE];

Each entry stores the same information, but the ar-
ray on the left wastes four bytes per entry. Two bytes
are used only to align the short code, and overly-wide

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Compress + Send Energy

Jo
ul

es

16
−b

as
eli

ne

16
−m

er
ge

16
−s

pa
rse

11
−m

er
ge

11
−c

om
pa

ct

12
−m

er
ge

no
ne

Application

Peripherals
Network
Memory
CPU

Figure 7. Optimizing compress (Text data)

types result in twelve wasted bits in fcode and four bits
wasted in code. Using bitfields, the layout on the right
contains the same information yet fits in half the space.
If the entry were not four bytes, it would need to con-
tain more members for alignment. Code with such struc-
tures would become more complex as C does not support
arrays of bitfields, but unless the additional code intro-
duces significant instruction cache misses, the change is
low-impact. A bitwise AND and a shift are all that is
needed to determine the offset into the compact struc-
ture. By allowing the whole table to fit in the cache, the
program with the compacted array has just 56,985 data
cache misses compared with 734,195 in the un-packed
structure; a 0.0026% miss rate versus 0.0288%. The
energy benefit for compress with the compact layout is
negligible because there is so little CPU and memory en-
ergy to eliminate by this technique. The “11-merge” and
“11-compact” bars illustrate the similarity. Nevertheless,
11-compact runs 1.5 times faster due to the reduction in
cache misses, and such a strategy could be applied to
any program which needs to reduce cache misses for per-
formance and/or energy. Eleven bit codes are necessary
even with the compact layout in order to reduce the size
of the data structure. Despite a dictionary with half the
size, the number of bytes to transmit increases by just
18% compared to “12-merge.” Energy, however, is lower
with the smaller dictionary due to less energy spent in
memory and increased speeds which reduce peripheral
overhead.

4.2 Exploiting the sleep mode

It has been noted that when a platform has a low-
power idle state, it may be sensible to sacrifice energy

27

in the short-term in order to complete an application
quickly and enter the low-power idle state [26]. Figure
8 shows the effect of this analysis for compression and
sending of text. Receive/decompression exhibits simi-
lar, but less-pronounced variation for different idle pow-
ers. It is interesting to note that, assuming a low-power
idle mode can be entered once compression is complete,
one’s choice of compression strategies will vary. With its
1 Watt of idle power, the Skiff would benefit most from
zlib compression. A device which used negligible power
when idle would choose the LZO compressor. While
LZO does not compress data the most, it allows the sys-
tem to drop into low-power mode as quickly as possible,
using less energy when long idle times exist. For web
data (not shown due to space constraints) the compres-
sion choice is LZO when idle power is low. When idle
power is one Watt, bzip2 energy is over 25% more energy
efficient than the next best compressor.

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

20
Total Energy Consumed in 15 Seconds

E
n

er
g

y
(J

o
u

le
s)

Idle Power (Watts)

bzip2
compress
lzo
ppmd
zlib
none

Figure 8. Compression + Send energy consumption
with varying sleep power (Text data)

4.3 Asymmetric compression

Consider a wireless client similar to the Skiff ex-
changing English text with a server. All requests by the
client should be made with its minimal-energy compres-
sor, and all responses by the server should be compressed
in such a way that they require minimal decompression
energy at the client. Recalling Figures 4 and 5, and rec-
ognizing that the Skiff has no low-power sleep mode, we
choose “compress-12” (the twelve-bit codeword LZW
compressor) for our text compressor as it provides the
lowest total compression energy over all communication
speeds.

To reduce decompression energy, the client can re-

quest data from the server in a format which facilitates
low-energy decompression. If latency is not critical and
the client has a low-power sleep mode, it can even wait
while the server converts data from one compressed for-
mat to another. On the Skiff, zlib is the lowest energy
decompressor for both text and web data. It exhibits the
property that regardless of the effort and memory param-
eters used to compress data, the resulting file is quite easy
to decompress. The decompression energy difference be-
tween compress, LZO, and zlib is minor at 5.70 Mb/sec,
but more noticeable at slower speeds.

Figure 9 shows several other combinations of com-
pressor and decompressor at 5.70 Mb/sec. “zlib-9 + zlib-
9” represents the symmetric pair with the least decom-
pression energy, but its high compression energy makes
it unlikely to be used as a compressor for devices which
must limit energy usage. “compress-12 + compress-12”
represents the symmetric pair with the least compres-
sion energy. If symmetric compression and decompres-
sion is desired, then this “old-fashioned” Unix compress
program can be quite valuable. Choosing “zlib-1” at
both ends makes sense as well – especially for programs
linked with the zlib library. Compared with the minimum
symmetric compressor-decompressor, asymmetric com-
pression on the Skiff saves only 11% of energy. How-
ever, modern applications such as ssh and mod gzip use
“zlib-6” at both ends of the connection. Compared to
this common scheme, the optimal asymmetric pair yields
a 57% energy savings – mostly while performing com-
pression.

It is more difficult to realize a savings over symmet-
ric zlib-6 for web data as all compressors do a good job
compressing it and “zlib-6” is already quite fast. Nev-
ertheless, by pairing “lzo” and “zlib-9,” we save 12% of
energy over symmetric “lzo” and 31% over symmetric
“zlib-6.”

5 Related work

This section discusses data compression for low-
bandwidth devices and optimizing algorithms for low
energy. Though much work has gone into these fields
individually, it is difficult to find any which combines
them to examine lossless data compression from an en-
ergy standpoint. Computation-to-communication energy
ratio has been been examined before [12], but this work
adds physical energy measurements and applies the re-
sults to lossless data compression.

5.1 Lossless Data compression for
low-bandwidth devices

Like any optimization, compression can be applied at
many points in the hardware-software spectrum. When

28

0

1

2

3

4

5

6

7

8

9

10

Energy to Send and Receive
 a compressable 1MB file

Jo
u

le
s

 z

lib
−9

 +
 z

lib
−9

 z

lib
−6

 +
 z

lib
−6

 z

lib
−1

 +
 z

lib
−1

co
m

pr
es

s−
12

 +
 c

om
pr

es
s−

12

 l

zo
 +

 lz
o

 l
zo

 +
 z

lib
−9

 c

om
pr

es
s1

2
+

zli
b−

9

 n
on

e
+

no
ne

Combination: Compressor + Decompressor

Text
Web

Figure 9. Choosing an optimal compressor-
decompressor pair

applied in hardware, the benefits and costs propagate to
all aspects of the system. Compression in software may
have a more dramatic effect, but for better or worse, its
effects will be less global.

The introduction of low-power, portable, low-
bandwidth devices has brought about new (or rediscov-
ered) uses for data compression. Van Jacobson intro-
duced TCP/IP Header Compression in RFC1144 to im-
prove interactive performance over low-speed (wired) se-
rial links [19], but it is equally applicable to wireless. By
taking advantage of uniform header structure and self-
similarity over the course of a particular networked con-
versation, 40 byte headers can be compressed to 3–5
bytes. Three byte headers are the common case. An
all-purpose header compression scheme (not confined
to TCP/IP or any particular protocol) appears in [24].
TCP/IP payloads can be compressed as well with IP-
Comp [39], but this can be wasted effort if data has al-
ready been compressed at the application layer.

The Low-Bandwidth File System (LBFS) exploits
similarities between the data stored on a client and server,
to exchange only data blocks which differ [31]. Files
are divided into blocks with content-based fingerprint
hashes. Blocks can match any file in the file system
or the client cache; if client and server have match-
ing block hashes, the data itself need not be transmit-
ted. Compression is applied before the data is transmit-
ted. Rsync [44] is a protocol for efficient file transfer
which preceded LBFS. Rather than content-based finger-
prints, Rsync uses its rolling hash function to account for

changes in block size. Block hashes are compared for a
pair of files to quickly identify similarities between client
and server. Rsync block sharing is limited to files of the
same name.

A protocol-independent scheme for text compression,
NCTCSys, is presented in [30]. NCTCSys involves a
common dictionary shared between client and server.
The scheme chooses the best compression method it has
available (or none at all) for a dataset based on parame-
ters such as file size, line speed, and available bandwidth.

Along with remote proxy servers which may cache or
reformat data for mobile clients, splitting the proxy be-
tween client and server has been proposed to implement
certain types of network traffic reduction for HTTP trans-
actions [14, 23]. Because the delay required for manip-
ulating data can be small in comparison with the latency
of the wireless link, bandwidth can be saved with little
effect on user experience. Alternatively, compression
can be built into servers and clients as in the mod gzip
module available for the Apache webserver and HTTP
1.1 compliant browsers [16]. Delta encoding, the trans-
mission of only parts of documents which differ between
client and server, can also be used to compress network
traffic [15, 27, 28, 35].

5.2 Optimizing algorithms for low energy

Advanced RISC Machines (ARM) provides an appli-
cation note which explains how to write C code in a man-
ner best-suited for its processors and ISA [1]. Sugges-
tions include rewriting code to avoid software emulation
and working with 32 bit quantities whenever possible to
avoid a sign-extension penalty incurred when manipu-
lating shorter quantities. To reduce energy consump-
tion and improve performance, the OptAlg tool repre-
sents polynomials in a manner most efficient for a given
architecture [34]. As an example, cosine may be ex-
pressed using two MAC instructions and an MUL to ap-
ply a “Horner transform” on a Taylor Series rather than
making three calls to a cosine library function.

Besides architectural constraints, high level languages
such as C may introduce false dependencies which can
be removed by disciplined programmers. For instance,
the use of a global variable implies loads and stores
which can often be eliminated through the use of register-
allocated local variables. Both types of optimizations are
used as guidelines by PHiPAC [6], an automated gener-
ator of optimized libraries. In addition to these general
coding rules, architectural parameters are provided to a
code generator by search scripts which work to find the
best-performing routine for a given platform.

Yang et al. measured the power and energy impact of
various compiler optimizations, and reached the conclu-
sion that energy can be saved if the compiler can reduce

29

execution time and memory references [48]. S̆imunić
found that floating point emulation requires much energy
due to the sheer number of extra instructions required
[46]. It was also discovered that instruction flow opti-
mizations (such as loop merging, unrolling, and software
pipelining) and ISA specific optimizations (e.g., the use
of a multiply-accumulate instruction) were not applied
by the ARM compiler and had to be introduced manually.
Writing such energy-efficient source code saves more en-
ergy than traditional compiler speed optimizations [45].

The CMU Odyssey project studied “application-
aware adaptation” to deal with the varying, often lim-
ited resources available to mobile clients. Odyssey trades
data quality for resource consumption as directed by the
operating system. By placing the operating system in
charge, Odyssey balances the needs of all running ap-
plications and makes the choice best suited for the sys-
tem. Application-specific adaptation continues to im-
prove. When working with a variation of the Discrete
Cosine Transform and computing first with DC and low-
frequency components, an image may be rendered at
90% quality using just 25% of its energy budget [41].
Similar results are shown for FIR filters and beamform-
ing using a most-significant-first transform. Parameters
used by JPEG lossy image compression can be varied to
reduce bandwidth requirements and energy consumption
for particular image quality requirements [43]. Research
to date has focused on situations where energy-fidelity
tradeoffs are available. Lossless compression does not
present this luxury because the original bits must be com-
municated in their entirety and re-assembled in order at
the receiver.

6 Conclusion and Future Work

The value of this research is not merely to show that
one can optimize a given algorithm to achieve a cer-
tain reduction in energy, but to show that the choice of
how and whether to compress is not obvious. It is de-
pendent on hardware factors such as relative energy of
CPU, memory, and network, as well as software factors
including compression ratio and memory access patterns.
These factors can change, so techniques for lossless com-
pression prior to transmission/reception of data must be
re-evaluated with each new generation of hardware and
software. On our StrongARM computing platform, mea-
suring these factors allows an energy savings of up to
57% compared with a popular default compressor and
decompressor. Compression and decompression often
have different energy requirements. When one’s usage
supports the use of asymmetric compression and decom-
pression, up to 12% of energy can be saved compared
with a system using a single optimized application for
both compression and decompression.

When looking at an entire system of wireless devices,
it may be reasonable to allow some to individually use
more energy in order to minimize the total energy used
by the collection. Designing a low-overhead method for
devices to cooperate in this manner would be a worth-
while endeavor. To facilitate such dynamic energy ad-
justment, we are working on EProf: a portable, realtime,
energy profiler which plugs into the PC-Card socket of
a portable device [22]. EProf could be used to create
feedback-driven compression software which dynami-
cally tunes its parameters or choice of algorithms based
on the measured energy of a system.

7 Acknowledgements

Thanks to John Ankcorn, Christopher Batten, Jamey
Hicks, Ronny Krashinsky, and the anonymous review-
ers for their comments and assistance. This work is
supported by MIT Project Oxygen, DARPA PAC/C
award F30602-00-2-0562, NSF CAREER award CCR-
0093354, and an equipment grant from Intel.

References

[1] Advanced RISC Machines Ltd (ARM). Writing Efficient
C for ARM, Jan. 1998. Application Note 34.

[2] T. M. Austin and D. C. Burger. SimpleScalar version 4.0
release. Tutorial in conjunction with 34th Annual Inter-
national Symposium on Microarchitecture, Dec. 2001.

[3] T. Bell and D. Kulp. Longest match string searching for
Ziv-Lempel compression. Technical Report 06/89, De-
partment of Computer Science, University of Canterbury,
New Zealand, 1989.

[4] T. Bell, M. Powell, J. Horlor, and R. Arnold. The Can-
terbury Corpus. http://www.corpus.canterbury.ac.nz/.

[5] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text
compression. ACM Computing Surveys, 21(4):557–591,
1989.

[6] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel. Op-
timizing matrix multiply using PHiPAC: a portable, high-
performance, ANSI C coding methodology. In 11th ACM
International Conference on Supercomputing, July 1997.

[7] D. C. Burger and T. M. Austin. The SimpleScalar tool
set, version 2.0. Technical Report CS-TR-97-1342, Uni-
versity of Wisconsin, Madison, June 1997.

[8] M. Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, Dig-
ital Systems Research Center, May 1994.

[9] J. Gailly and M. Adler. zlib. http://www.gzip.org/zlib.
[10] J. Gailly, Maintainer. comp.compression Internet

newsgroup: Frequently Asked Questions, Sept. 1999.
[11] J. Gilchrist. Archive comparison test.

http://compression.ca.
[12] P. J. Havinga. Energy efficiency of error correction on

wireless systems. In IEEE Wireless Communications and
Networking Conference, Sept. 1999.

30

[13] J. Hicks et al. Compaq personal server
project, 1999. http://crl.research.compaq.com
/projects/personalserver/default.htm.

[14] B. C. Housel and D. B. Lindquist. Webexpress: a system
for optimizing web browsing in a wireless environment.
In Proceedings of the Second Annual International Con-
ference on Mobile Computing and Networking, 1996.

[15] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical study
of delta algorithms. In Software configuration manage-
ment: ICSE 96 SCM-6 Workshop. Springer, 1996.

[16] Hyperspace Communications, Inc.
Mod gzip. http://www.ehyperspace.com /htm-
lonly/products/mod gzip.html.

[17] Intel Corporation. SA-110 Microprocessor Technical Ref-
erence Manual, December 2000.

[18] Intel Corporation. Intel StrongARM SA-1110 Micropro-
cessor Developer’s Manual, October 2001.

[19] V. Jacobson. RFC 1144: Compressing TCP/IP headers
for low-speed serial links, Feb. 1990.

[20] K. Jamieson. Implementation of a power-saving proto-
col for ad hoc wireless networks. Master’s thesis, Mas-
sachusetts Institute of Technology, Feb. 2002.

[21] P. Jannesen et. al. (n)compress. available, among other
places, in Redhat 7.2 distribution of Linux.

[22] K. Koskelin, K. Barr, and K. Asanović. Eprof: An en-
ergy profiler for the iPaq. In 2nd Annual Student Oxygen
Workshop. MIT Project Oxygen, 2002.

[23] R. Krashinsky. Efficient web browsing for mobile clients
using HTTP compression. Technical Report MIT-LCS-
TR-882, MIT Lab for Computer Science, Jan. 2003.

[24] J. Lilley, J. Yang, H. Balakrishnan, and S. Seshan. A uni-
fied header compression framework for low-bandwidth
links. In 6th ACM MOBICOM, Aug. 2000.

[25] Lycos. Lycos 50, Sept. 2002. Top 50 searches on Lycos
for the week ending September 21, 2002.

[26] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony,
and R. Rajkumar. Critical power slope: Understanding
the runtime effects of frequency scaling. In International
Conference on Supercomputing, June 2002.

[27] J. C. Mogul. Trace-based analysis of duplicate suppres-
sion in HTTP. Technical Report 99.2, Compaq Computer
Corporation, Nov. 1999.

[28] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishna-
murthy. Potential benefits of delta encoding and data
compression for HTTP. Technical Report 97/4a, Com-
paq Computer Corporation, Dec. 1997.

[29] J. Montanaro et al. A 160-mhz, 32-b, 0.5-w CMOS RISC
microprocessor. IEEE Journal of Solid-State Circuits,
31(11), Nov. 1996.

[30] N. Motgi and A. Mukherjee. Network conscious text
compression systems (NCTCSys). In Proceedings of
International Conference on Information and Theory:
Coding and Computing, 2001.

[31] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proceedings of the
18th ACM Symposium on Operating Systems Princi-
ples (SOSP ’01), pages 174–187, Chateau Lake Louise,
Banff, Canada, October 2001.

[32] Nielsen NetRatings Audience Measurement Service. Top
25 U.S Properties; Week of Sept 15th., Sept. 2002.

[33] M. F. Oberhumer. LZO.
http://www.oberhumer.com/opensource/lzo/.

[34] A. Peymandoust, T. S̆imunić, and G. D. Micheli. Low
power embedded software optimization using symbolic
algebra. In Design, Automation and Test in Europe, 2002.

[35] J. Santos and D. Wetherall. Increasing effective link
bandwidth by suppressing replicated data. In USENIX
Annual Technical Conference, June 1998.

[36] K. Sayood. Introduction to data compression. Morgan
Kaufman Publishers, second edition, 2002.

[37] J. Seward. bzip2. http://www.spec.org
/osg/cpu2000/CINT2000/256.bzip2/docs/256.bzip2.html.

[38] J. Seward. e2comp bzip2 library.
http://cvs.bofh.asn.au/e2compr/index.html.

[39] A. Shacham, B. Monsour, R. Pereira, and M. Thomas.
RFC 3173: IP payload compression protocol, Sept. 2001.

[40] D. Shkarin. PPMd.
ftp://ftp.elf.stuba.sk/pub/pc/pack/ppmdi1.rar.

[41] A. Sinha, A. Wang, and A. Chandrakasan. Algorithmic
transforms for efficient energy scalable computation. In
IEEE International Symposium on Low Power Electron-
ics and Design, August 2000.

[42] Standard Performance Evaluation Corporation.
CPU2000, 2000.

[43] C. N. Taylor and S. Dey. Adaptive image compression
for wireless multimedia communication. In IEEE Inter-
national Conference on Communication, June 2001.

[44] A. Tridgell. Efficient Algorithms for Sorting and Syn-
chronization. PhD thesis, Australian National University,
Apr. 2000.

[45] T. S̆imunić, L. Benini, and G. D. Micheli. Energy-
efficient design of battery-powered embedded systems.
In IEEE International Symposium on Low Power Elec-
tronics and Design, 1999.

[46] T. S̆imunić, L. Benini, G. D. Micheli, and M. Hans.
Source code optimization and profiling of energy con-
sumption in embedded systems. In International Sympo-
sium on System Synthesis, 2000.

[47] M. A. Viredaz and D. A. Wallach. Power evaluation of
Itsy version 2.4. Technical Report TN-59, Compaq Com-
puter Corporation, February 2001.

[48] H. Yang, G. R. Gao, A. Marquez, G. Cai, and Z. Hu.
Power and energy impact of loop transformations. In
Workshop on Compilers and Operating Systems for
Low Power 2001, Parallel Architecture and Compilation
Techniques, Sept. 2001.

31

 APPENDIX C
Fine-Grain CAM-Tag Cache Resizing Using Miss Tags

Michael Zhang
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139

rzhang@cag.lcs.mit.edu

Krste Asanović
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139

krste@cag.lcs.mit.edu

ABSTRACT
A new dynamic cache resizing scheme for low-power CAM-
tag caches is introduced. A control algorithm that is only
activated on cache misses uses a duplicate set of tags, the
miss tags, to minimize active cache size while sustaining
close to the same hit rate as a full size cache. The cache
partitioning mechanism saves both switching and leakage
energy in unused partitions with little impact on cycle time.
Simulation results show that the scheme saves 28–56% of
data cache energy and 34–49% of instruction cache energy
with minimal performance impact.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Associative

Memory, Cache Memory, Primary Memory

General Terms
Design

Keywords
Content-Addressable-Memory, Low-Power, Cache Resizing,
Energy Efficiency, Leakage Current

1. INTRODUCTION
Energy dissipation has emerged as one of the primary con-

straints for microprocessor designers. In most microproces-
sor designs, caches dissipate a significant fraction of total
power. For example, the Alpha 21264 dissipates 16% [12]
and the StrongArm dissipates more than 43% [19] of overall
power in caches. As a result, there has been great interest
in reducing cache power consumption.

Initial cache energy reduction techniques focused on dy-
namic switching power [1, 2, 3, 4, 7, 10, 13, 22]. With
technology scaling, leakage current is increasing exponen-
tially, and more attention has been paid to leakage power
reduction [9, 11, 15, 16, 18, 20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

One approach for reducing cache power consumption is
cache resizing, where the active size of the cache is reduced
to match the current working set. Previously reported cache
resizing schemes can be categorized by the mechanism used
to activate and deactivate cache entries, and by the control
policy used to select the active partition. Some schemes
deactivate cache entries line by line [9, 11], while others de-
activate the cache by sets, ways, or both [1, 16, 20]. The
control policy used to select the active set can be off-line,
where the working set is statically determined by profiling
the application [1], or on-line, where the working set is dy-
namically determined as the application executes [9, 11, 16,
20].

Previous cache resizing techniques are designed for RAM-
tag caches, where cache tags are held in RAM structures.
However, commercial low-power microprocessors use CAM-
tag caches, where the cache tags are held in Content Ad-
dressable Memory [14, 19]. CAM-tag caches are popular in
low-power processors because they provide high associativ-
ity, which avoids expensive cache misses, and results in lower
overall energy [23].

This paper introduces miss tag resizing (MTR), a new
cache resizing scheme for CAM-tag caches. MTR uses hi-
erarchical bitlines to divide each cache subbank into small
way partitions, such that switching and leakage power is
only dissipated in active ways. In addition, individual cache
lines within an active partition can be disabled to further
reduce leakage power. Because CAM-tag caches have high
associativity (32-way for the design simulated), partition-
ing the cache by way gives much finer grain control over
cache size compared to RAM-tag way activation [1]. It also
avoids the data remapping problem inherent in set resizing
schemes [16]. In addition, the scheme proposed here adapts
associativity independently in each sub-bank, thereby al-
lowing total cache size to be varied a single line at a time.
Resizing of different subbanks is spaced evenly in time so
that at most a single dirty line needs to be written back for
a resize event.

The size of an MTR cache is governed using an on-line
control policy which aims to reduce the cache size to the
smallest value that will give a minimal miss rate increase
compared to the full sized cache. The control policy uses an
extra set of tags, the miss tags, which are only accessed on
misses to determine if a full-sized cache would have hit. Be-
cause the miss tags are only accessed on misses, they add no
additional switching energy to hits and can be implemented
using slower, denser, and less leaky transistors, e.g., high VT

or long channel transistors. The main penalty for using miss

32

S
ta

tu
s

Tag Array Data Array

Tag Bank Offset

Bank 0

Bank 1

Bank 2

Data

Hit?

Data Address

Figure 1: CAM-tag cache organization.

tags is the additional area overhead, which we estimate at
around 10% depending on actual layout styles.

The rest of the paper is organized as follows. Section 2
reviews related work on cache resizing. Section 3 presents
the MTR algorithm. Section 4 describes the hardware mod-
ifications for energy reduction. Section 5 gives results for
active cache size reductions. Section 6 presents the energy
savings achieved by MTR. And Section 7 concludes.

2. RELATED WORK
In this section, we discuss existing cache resizing tech-

niques and cache line deactivation techniques. An off-line
resizing technique was proposed in [1]. Applications are
profiled prior to execution to determine an optimal set-
associativity. At run-time, cache ways of the L1 RAM-tag
set-associative cache are turned off according to the pro-
file information. This technique reduces both switching and
leakage energy by powering down the entire cache way. How-
ever, it does not adapt to varying cache usage during differ-
ent phases of the program execution. As we will show later,
many benchmarks have working sets that vary widely during
various phases of execution. Furthermore, these static tech-
niques do not work well for multi-programmed machines,
where working set size also varies as a function of the active
process. The DRI I-cache [16] is an on-line resizing tech-
nique that resizes a RAM-tag instruction cache by measur-
ing the miss rate and keeping it under a preset threshold.
This performance threshold is set to a typical cache miss
rate prior to execution, which does not adapt to program
execution phases. Line deactivation techniques are similar
to the above resizing techniques. These techniques usually
turn off individual cache lines that are not necessarily con-
tiguous. In cache decay [11], a per-line counter tracks the
usage of each cache line. Lines with no recent uses are turned
off. This technique eliminates the static energy of dead lines
but does not reduce switching energy. Adaptive mode con-
trol (AMC) [9] resizes a RAM-tag cache using a technique
similar to cache decay. AMC keeps all tags turned on. An
ideal miss rate is obtained by searching the entire tag ar-
ray, and an actual miss rate is obtained by only searching
the tags of all the active lines. When these two miss rates
differ by more than a preset performance factor, the resize

cache_access(action, addr_tag, addr_offset, data) {
if (addr_tag in tag_array) { /* hit case */
if (action == Read) {

return data_array[addr_tag, addr_offset];
} else {

data_array[addr_tag, addr_offset] = data;
}
return hit;

} else { /* miss case */
/* fetch data from L2 and update the cache */
fetch_from_memory(addr_tag, addr_offset);
/* check whether tag is in MTR tag array */
if (addr_tag in MTR_tag_array) {

/* if tag is found in MTR, */
/* increment MTR hit counter */
MTR_hits++;

} else {
/* otherwise, write the tag into MTR array */
update_MTR_tag_content(addr_tag);

}
return miss;

}
}

cache_resize() {
if (MTR_hits > HI_BOUND) {
upsize();

} else if (MTR_hits < LO_BOUND) {
downsize();

} else {
do_nothing();

}
/* reset the MTR hit counter for */
/* next resizing interval */
MTR_hits = 0;

}

Figure 2: Pseudo-code for MTR.

interval is adjusted. This technique eliminates the need for
presetting the desired miss rates, but only reduces leakage
power in the data arrays. Tag array lookup, however, is a
significant portion of the cache access energy, especially for
CAM-tag caches. In [20], various design choices are com-
pared to evaluate the usefulness of resizable caches. On av-
erage, over 50% cache size reduction is achieved with either
selective ways [1] or selective sets [16]. Turning off por-
tions of the cache generally discards the stored data, thus
increasing miss rate and the number of L2 accesses. In [8],
the effect of L2 energy overhead is examined. Our MTR
scheme is similar to AMC in that we resize based on the
difference between the full cache hit rate and the reduced
cache hit rate. However, we employ a separate set of tags
that are only accessed on misses to gather the full cache hit
rate. This avoids additional switching and leakage power in
the regular CAM tags. Also, we use the miss rate differ-
ence to control a fine-grain partitionable cache which can
save switching as well as leakage power. Another problem
with previous partitioning schemes is that when applied to
a data cache, they can generate a large number of dirty line
writebacks in a short time interval when a set or way is
deactivated, or when a decay interval elapses. These write
back bursts add to cache control complexity and can cause
additional performance degradation. MTR performs way
deactivation within a highly associative cache one line at a
time, thus avoids write back bursts.

33

3. MISS-TAG RESIZING TECHNIQUE
Figure 1 shows a typical CAM-tag cache organization.

The entire cache is divided into subbanks, each consisting
of a tag array and a data array, where a subbank is a cache
set. Within each set are the cache ways. The tags are stored
in CAM structures to give high associativity at low power.
During each cache access, one subbank (set) of the cache is
accessed and the tag is broadcast to the entire tag array.
A matched tag results in a hit and triggers the appropriate
wordline to enable the access.

To implement MTR, we add an extra set of tags, the miss-

tags, which act as the tags of a fixed-size cache. These tags
keep track of what the cache contents would have been if
the cache was always full size. During a regular cache miss,
we consult the miss-tag arrays to see whether having a full
cache could have avoided the miss. A per-subbank counter
is used to record the number of miss-tag hits, which is pre-
cisely the difference between the number of misses in the
down-sized cache and in a full size cache. A large differ-
ence in the miss rates suggests that having a larger cache
will reduce the miss rate; a small difference indicates that
perhaps a smaller cache would be adequate. Two scenarios
could explain a small difference in miss rate between the full
size and reduced size caches. First, there are no misses in
the regular tags, indicating that the program has a small
working set. In the second scenario, there are many misses
in the regular tags, most of which also miss in the miss tags.
This suggests that the program has little temporal locality,
such as a data streaming application.

The resizing decision is based on the difference in miss
rates between the active tags and the miss tags. The pseudo-
code in Figure 2 illustrates the resizing control loop of MTR.
There are three parameters in the MTR scheme: miss lower

bound, miss upper bound, and resize interval. In Section 5.2,
we will discuss the choices of resizing parameters in detail.
Each subbank is independently resized once during each re-
sizing interval. Resizing events are spread out evenly within
each interval so that only one subbank resizes at a time to
minimize writeback traffic burst to the lower levels of the
memory hierarchy.

4. HARDWARE MODIFICATION
Figure 3 details three circuit techniques used by MTR.

For the SRAM cells in both data and tag arrays, we use
the Gated-Vdd technique [15] to reduce leakage energy by
adding an N-type stack transistor. When signal Line On

is turned off, it virtually eliminates leakage current in the
SRAM cells. We also use the leakage-biased bitline (LBB)
technique proposed in [17] to reduce the leakage in SRAM
bitlines, CAM bitlines and search lines, and CAM match
lines. The leakage power of the circuit depends on the actual
voltage of these heavily capacitive lines. The LBB technique
turns off the precharge of these lines, allowing them to self-
bias their voltage levels to the optimal values, at which leak-
age power is minimized using leakage currents. The cache
subbanks are divided into eight equal partitions using hi-
erarchical bitlines [7]. The Partition On bits are used to
control the activation of each partition. An inactive par-
tition consumes no switching energy and minimal leakage
energy.

Since the miss-tags are only used during a cache miss,
we can use slow, low-leakage components without incurring

RAM Cell

CAM Cell

R
A

M
_g

lo
b

al
_b

l

C
A

M
_g

lo
b

al
_b

l

C
A

M
_g

lo
b

al
_s

l

CAM_pch

Partition_On[0]

Partition_On[6]

Partition_On[7]

Line_On

RAM_wl

R
A

M
_l

o
ca

l_
b

l

C
A

M
_l

o
ca

l_
sl

C
A

M
_l

o
ca

l_
b

l

CAM_wl

CAM_match

RAM_pch_local

Line_On

Figure 3: Energy reduction techniques used by

MTR: Gated-Vdd for SRAM cell leakage reduction;

Leakage-Bias for CAM match line; hierarchical bit-

lines for subbank partitioning.

delay overhead. The energy overhead of miss-tag accesses
is added to L2 access energy and is discussed in Section 6.
The area overhead can be reduced by using a denser layout
for the tags, for example, adopting a hybrid RAM-CAM
structure to reduce the number of match comparators.

5. CACHE SIZE REDUCTION RESULTS
In order to evaluate MTR, we modified the SimpleScalar [5]

simulator. We modeled an in-order single issue core in our
experiments. The benchmark set we used is a subset of
SpecINT2000 and SpecFP2000, each running for 1.5 billion
cycles with the reference inputs. We chose a typical low-
power cache configuration [14] as a baseline. It is a 32KB
cache implemented in 32 1KB subbanks. Each subbank con-
sists of 32 cache lines of 32 bytes. The cache is 32-way set-
associative with a FIFO replacement policy in each subbank.

One unary encoded resizing pointer per subbank is used to
control which cache lines to activate/deactivate, similar to
the XScale FIFO pointer [14]. When a cache is downsized,
only the last active line is turned off. When it is upsized,
however, the entire partition where the last active line re-
sides is turned on. If all the lines in the entire partition are
already active, the next partition is turned on. When all
the lines in a partition are inactive, the partition is turned
off. To avoid thrashing with small cache sizes, we set the
minimum cache size to be one partition.

5.1 Baseline Case
We implemented a baseline resizing technique to compare

against the miss tags scheme. This baseline technique works
exactly like MTR except it compares the actual cache miss

rate with the miss bounds to make resizing decisions, similar
to DRI I-cache [16]. We will refer to this baseline technique
as Miss-Rate-Based-Resizing (MRBR).

5.2 Impact of Resizing Parameters
From simulation results, we found that no individual pa-

rameter has a large impact on resizing performance. The
most important parameter, rather, is the ratio of the miss
upper/lower bounds to the resize interval. For example, set-
ting the miss bound of 5 to 10 misses for a 32k resizing in-
terval yields similar results for a range of 10 to 20 misses for

34

8 16 24 32
1.57

1.58

1.59

1.6

1.61

1.62
D−Cache Size vs. Average CPI

A
ve

ra
ge

 C
P

I (
cy

cl
e/

in
st

r)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 4: CPI versus effective cache size for L1

data cache. MTR gives the smallest effective

cache size for a given CPI.

8 16 24 32
2.4

2.6

2.8

3

3.2
D−Cache Size vs. Average Miss Rate

A
ve

ra
ge

 M
is

s
R

at
e

(%
)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 5: Miss Rate versus effective cache size for

L1 data cache. MTR gives the smallest effective

cache size for a given miss rate.

a 64k resizing interval. Simulations show that for larger re-
size intervals, the number of writebacks decrease. However,
when the resize interval is too large, MTR starts to yield
sub-optimal results. We have found that resize intervals of
128K references worked well for the benchmarks studied,
i.e., resize every 128k memory references.

5.3 Data Cache Resizing Results
Figure 4 shows the resizing results for the L1 data cache.

Each data point (effective cache size and CPI pair) is ob-
tained by varying the miss bounds and resizing interval
length to obtain the optimal CPI for a given effective cache
size. Average cache size is calculated by averaging the per-
centage of active partitions in each resizing period. In order
to verify that both resizing techniques work better than a
fixed-size cache, we simulated the CPI of fixed-size caches of
sizes 32KB, 16KB, and 8KB. This figure shows that for the
same CPI, MTR yields much smaller effective cache sizes.
We limited ourselves to considering configurations that yield
less than a 2% CPI increase to ensure MTR does not incur a
large performance penalty. Parameters were varied to show
the trade off between effective cache size and performance.
For the same effective cache size, MTR performs much bet-
ter than the baseline technique. Figure 5 further supports
the above result. MTR introduces less than a 16% increase
in the largest fixed cache miss rate. Again, for the same
effective cache size, MTR has the lowest miss rate. On av-
erage, MTR uses less than an 8KB effective cache size while
increasing the CPI by less than 1.5%.

Figure 6 shows how the effective cache size and the ac-
tual miss rates change over time with MTR. The figures on
the left-hand side show the effective cache size over time.
We observe two different behaviors. Benchmarks 164.gzip,
177.mesa, 183.equake, 197.parser, and 256.bzip2 demon-
strate MTR’s ability to adapt to different phases of the exe-
cution with varying cache usage. For the rest of the bench-
marks, cache usage is constant throughout the execution.
MTR is able to find the optimal size for each benchmark
without prior profiling information. The figures on the right-
hand-side show how the miss rates change throughout the
execution. We observe that an increase in the miss rate
is countered by an increase in cache size, which in return,
reduces miss rate.

5.4 Instruction Cache Resizing Results
For our benchmark set, the instruction cache has extremely

low miss rates. Therefore, it is easier to find a common
reference miss rate for a large set of benchmarks. For all
the benchmarks we used in this paper, the baseline resiz-
ing technique and MTR have similar performance. Both of
them outperform the fixed size instruction cache. Figures 9
and 8 show that MTR uses an effective cache size of less than
12KB while introducing, on average, less than 12% increase
in miss rate and 1.4% increase in CPI.

6. ENERGY REDUCTION RESULTS
In this section, we present the energy savings obtained by

MTR. The energy consumption figures are obtained through
HSpice simulation of extracted layout from Cadence [6] us-
ing TSMC 0.25µm technology [21]. The cache design has
been significantly optimized for low power, including divided
word lines and low-swing bitlines. Table 1 shows the differ-
ent energy components of this CAM-tag cache. MTR re-
duces the data array and CAM-tag array access energy but
not decoding energy. Since the actual percentage of cache
leakage power in the total cache power can vary significantly
due to process technology, operating temperatures and volt-
ages, among other factors, we quantify cache leakage as a
percentage of total cache power, and demonstrate the sav-
ings across a range of possible values. We perform a similar
sensitivity analysis for L2 cache energy by quantifying L2
access energy as a multiple of L1 access energy and give re-
sults for a range of values. We include the search energy for
the miss-tags as part of L2 energy. The energy reduction is
calculated as

L1 switching energy reduction × % of switching energy
+ L1 leakage energy reduction × % of leakage energy
− Miss Rate Increase × L2 access energy

Figures 10 and 11 show the energy reduction of data and
instruction cache. The x-axis represents the percentage of
leakage energy in the total energy consumption. The y-axis
represents the energy savings. From previous experiments,
we use resizing parameters such that the effective data cache
size is 8KB and effective instruction cache is 12KB. These
parameters are chosen to minimize the performance impact

35

0

50

100
164.gzip

%

0

50

100
168.wupwise

%

0

50

100
175.vpr

%

0

50

100
176.gcc

%

0

50

100
177.mesa

%

0

50

100
179.art

%

0

50

100
181.mcf

%

0

50

100
183.equake

%

0

50

100
188.ammp

%

0

50

100
197.parser

%

0

50

100
256.bzip2

%

Figure 6: Different effective cache sizes during

different phases of a 32KB data cache determined

by MTR. The x-axis represents 0 to 1.5 billion

cycles.

0

5

10

15

%

164.gzip

0

5

10

15

%

168.wupwise

0

5

10

15

%

175.vpr

0

5

10

15

%

176.gcc

0

5

10

15

%

177.mesa

0

5

10

15

%

179.art

0

5

10

15

%

181.mcf

0

5

10

15

%

183.equake

0

5

10

15

%

188.ammp

0

5

10

15

%

197.parser

0

5

10

15

%

256.bzip2

Figure 7: Cache miss rates during different

phases of a 32KB data cache determined by MTR.

The x-axis represents 0 to 1.5 billion cycles.

8 16 24 32
1.55

1.6

1.65

1.7

1.75
I−Cache Size vs. Average CPI

A
ve

ra
ge

 C
P

I (
cy

cl
e/

in
st

r)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 8: CPI versus effective cache size for L1

instruction cache. MTR and MRBR have similar

performance.

8 16 24 32

0.36

0.38

0.4

0.42

0.44
I−Cache Size vs. Average Miss Rate

A
ve

ra
ge

 M
is

s
R

at
e

(%
)

Average Effective Cache Size (kB)

fixed size
MRBR
MTR

Figure 9: Miss rate versus effective cache size

for L1 instruction cache. MTR and MRBR have

similar performance.

0 10 20 30 40 50

20

30

40

50

60

70

80
D−Cache Energy Reduction

D
−C

ac
he

 E
ne

rg
y

R
ed

uc
tio

n
(%

)

Leakage of Total (%)

16X
64X
128X

Figure 10: Data cache energy savings. X-axis

represent the percentage of leakage energy of to-

tal energy. Y-axis represents savings. Each curve

represents a different L2 access energy quantified

as a factor of L1 write access energy.

0 10 20 30 40 50

35

40

45

50

55

60
I−Cache Energy Reduction

I−
C

ac
he

 E
ne

rg
y

R
ed

uc
tio

n
(%

)

Leakage of Total (%)

16X
64X
128X

Figure 11: Instruction cache energy savings. X-

axis represent the percentage of leakage energy

of total energy. Y-axis represents savings. Each

curve represents a different L2 access energy

quantified as a factor of L1 write access energy.

36

Table 1: Energy components of CAM-tag cache in

TSMC 0.25 µm technology.. A
√

means the read or

write access performs that operation, thus uses that en-

ergy component.

Operation Energy (pJ) Read Write
CAM-Array Search 57.1

√ √

Data-Array Read 26.2
√

Data-Array Write 53.5
√

Decoding & I/O 12.2
√ √

Total 95.5 pJ 122.8 pJ

while turning off the maximum number of partitions in the
cache.

Each different curve represents the energy savings of a
specific L2 access energy. We chose an range of L2 access
energy, from 16× to 128× of the L1 write access energy. For
data cache, MTR reduces energy by 28%, when there is no
leakage energy and L2 penalty is 128× of L1 write access
energy, to 56%, when 50% of the cache energy is leakage
and L2 penalty is 16× of L1 access energy. Similarly, MTR
reduction ranges from 34% to 49% for instruction cache de-
pending on leakage percentage and L2 penalty.

7. CONCLUSION
In this paper, we presented MTR, a dynamic cache re-

sizing technique for CAM-tag caches. The dynamic control
mechanism of MTR uses a set of duplicate miss tags to keep
track of the miss rate as if the entire cache was used. Re-
sizing decisions are made according to the difference in the
actual miss rate and the miss rate of the miss-tags. The con-
trol mechanism is only activated on misses, thereby saving
energy and allowing the duplicate tags to be implemented
in slower and denser logic using low leakage transistors. The
cache partitioning mechanism saves both switching and leak-
age energy in unused partitions, and allows resizing at a sin-
gle line granularity. The subbanks are resized independently
in non-overlapping phases to avoid write back bursts. With
around 10% area overhead, MTR reduces 28–56% of data
cache energy and 34–49% of instruction cache energy, where
the baseline caches were highly optimized for low-power but
fixed-size operation.

8. ACKNOWLEDGMENTS
We would like to thank members of the MIT SCALE

group for feedback and comments on earlier drafts of this pa-
per. We also appreciate the comments from the anonymous
reviewers. This work was partly funded by DARPA award
F30602-00-2-0562, NSF CAREER award CCR-0093354, and
a donation from Infineon Technologies.

9. REFERENCES
[1] D. Albonesi. Selective cache ways: On-demand cache

resource allocation. In MICRO-32, November 1999.

[2] B. Amrutur and M. Horowitz. Techniques to reduce
power in fast wide memories. In ISLPED, pages
92–93, October 1994.

[3] B. Amrutur and M. Horowitz. A replica technique for
wordline and sense control in low-power SRAMs.
IEEE JSSC, 33(8):1208–1219, August 1998.

[4] N. Bellas, I. Hajj, and C. Polychronopoulos. Using
dynamic cache management techniques to reduce
energy in a high-performance processor. In ISLPED,
pages 64–69, August 1999.

[5] D. Burger and T. Austin. The SimpleScalar tool set,
version 2.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

[6] Cadence Corporation. http://www.cadence.com/

[7] K. Ghose and M. B. Kamble. Reducing power in
superscalar processor caches using subbanking,
multiple line buffers and bit-line segmentation. In
ISLPED, pages 70–75, August 1999.

[8] H. Hanson et. al. Static energy reduction techniques
for microprocessor caches. In ICCD, May 2001.

[9] H. Zhou et. al. Adaptive mode control: A
static-power-efficient cache design. In PACT,
September 2001.

[10] K. Inoue, T. Ishihara, and K. Murakami.
Way-predicting set-associative cache for high
performance and low energy consumption. In
ISLPED, pages 273–275, August 1999.

[11] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache
leakage power. In ISCA-28, June 2001.

[12] R. Kessler. The Alpha 21264 microprocessor. IEEE

Micro, 19(2):24–36, March/April 1999.

[13] J. Kin, M. Gupta, and W. Mangione-Smith. The
Filter Cache: An energy efficient memory structure. In
Micro-30, December 1997.

[14] L. Clark et. al. An embedded 32-b microprocessor core
for low-power and high-performance applications.
JSSC, 36(11):1599–1608, November 2001.

[15] M. Powell et. al. Gated-Vdd: a circuit technique to
reduce leakage in cache memories. In ISLPED, July
2000.

[16] M. Powell et. al. Reducing leakage in a
high-performance deep-submicron instruction cache.
TVSLI, 9(1):77–89, February 2001.

[17] S. Heo et. al. Dynamic fine-grain leakage reduction
using leakage-biased bitlines. In ISCA-29, Anchorage,
Alaska, May 2002.

[18] S. Narendra et. al. Scaling of stack effect and its
application for leakage reduction. In ISLPED, pages
195–200, 2001.

[19] S. Santhanam et al. A low-cost, 300-MHz, RISC CPU
with attached media processor. IEEE JSSC,
33(11):1829–1838, November 1998.

[20] S. Yang et. al. Exploiting choice in resizable cache
design to optimize deep-submicron processor
energy-delay. In HPCA-8, Feburary 2002.

[21] Taiwan Semiconductor Manufacturing Company.
http://www.tsmc.com/

[22] L. Villa, M. Zhang, and K. Asanović. Dynamic zero
compression for cache energy reduction. In
MICRO-33, 2000.

[23] M. Zhang and K. Asanović. Highly-associative caches
for low-power processors. In Koolchips Workshop,

MICRO-33, December 2000.

37

